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CHAPTER 1

INTRODUCTION

1.1 Statement of The Problem

Future space missions will require thermal transport devices with

the ability to handle transient pulse heat loads [1], especially

evaporator loads with high peak-to-average power ratios and

reversed-pulse heat loads at the condenser. Utilization of systems

which are designed to handle pulse heat loads is impractical because of

the large masses required. Incorporation of thermal energy storage

(TES) into heat pipe rejection systems can be a promising method to

mitigate such puloe heat loads.

Tilton et al. [2] and El-Genk et al. [3] have examined the

transient response of a heat pipe under external thermal loading at the

condenser. However, they did not offer any suggestion for dealing with

these pulse heat loads. Some configurations to reduce the dangers of

pulse heat loads have been proposed by Beam [4] and Sheffield [5], but a

detailed analysis of HP/TES mitigation techniques has not been

attempted. These concepts must be tested and understood so that they

may be integrated successfully into an overall thermal control system

design.

The surface-area-to volume ratio of the TES elements is an

important parameter in the melting and solidification process of the

PCX. In this research, the transient responses of three different

HP/TES configurations, as shown in Fig 1.1, were tested and compared

under a variety of heat load conditions.
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1.2 Description of The Heat Pipe

The heat pipe is an innovative device capable of transferring large

quantities of heat through relatively small cross-sectional areas with

very small temperature differences. Moreover, a heat pipe requires no

external power input to sustain its operation. The concept behind the

heat pipe was first suggested by Gauler [6] in 1942. However, it was

not widely publicized until 1964 when Grover [7,8] and his colleagues at

the Los Alamos Scientific Laboratory independently reinvented the

concept. Grover also demonstrated the device effectiveness as a

high-performance heat transmission mechanism, coined the name "heat

pipe," and developed several applications for such systems. Since then,

the remarkable properties of the heat pipe have become appreciated, and

serious developmental work is still taking place.

A heat pipe consists of a closed tube or chamber with various

shapes whose inner surface is lined with a porous capillary wick as

shown in Fig 1.2. Wire screen, fiber glass, porous metal, and woven

cloth have all been used as the capillary wick. Narrow grooves, cut

lengthwise in the interior pipe wall, can also serve as a capillary wick

structure. The wick is saturated with the liquid phase of a working

fluid and the remaining volume of the tube contains the working fluid

vapor phase. Heat applied at the evaporator by an external source

vaporizes the working fluid in that section. The resulting difference

in pressure drives vapor from the evaporator to the condenser, where it

condenses releasing the latent heat of vaporization to a heat sink in

that section of the pipe. Depletion of liquid by evaporation causes the

liquid-vapor interface in the evaporator to enter into the wick surface

3
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Figure L.2 Details of a conventional heat pipe
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and a capillary pressure is developed there. This capillary pressure

pumps the condensed liquid back to the evaporator for reevaporation.

Thus, the heat pipe can continuously transport the latent heat of

vaporization from the evaporator section to the condenser section

without drying out the wick. This process will continue as long as the

flow passage for the working fluid is not blocked and a sufficient

capillary pressure is maintained. Heat pipes may be operated over a

broad range of temperatures by choosing an appropriate working fluid.

The amount of heat that can be transported by the latent heat of

vaporization is usually several orders of magnitude larger than that

which can be transported as sensible heat in a conventional convective

system. The heat pipe can, therefore, transport a large amount of heat

with only a small unit size. Because only a very small temperature drop

occurs in the vapor flow, heat pipes have thermal characteristics orders

of magnitude better than any known solid.

However, unlike solid conductors, the heat pipe characteristics are

dependent not only upon size, shape, and material but also upon

construction, working fluid, and heat transfer rate. Noreover, heat

pipes operate under heat transfer limitations such as the sonic limit,

capillary limit, entrainment limit, and boiling limit. When any of

these limitations is encountered, the capillary wick structure may dry

out, leading to failure of the heat pipe.

In this research, a stainless steel grooved heat pipe using sodium

as the working fluid was studied. Grooved heat pipes, which use narrow

grooves as the capillary wick structure, have been used quite

successfully in practice. The advantages of a grooved heat pipe are its

low capillary liquid flow resistance, high reliability, and ease of
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fabrication. However, the rather large nominal diameter of the grooves

makes both the capillary limit and entrainment limit quite low. Vinz

and Busse [9] and Barantsevich et al. [10] showed experimentally that if

the grooves in the evaporator section are wrapped with layers of fine

wick mesh, the capillary limit and entrainment limit can be improved

significantly while maintaining low capillary liquid flow resistance.

1.3 Literature Review

Analysis of transient heat pipe behavior has been the subject of

many recent studies [11-16]. Chang and Colwell's [11] model for low

temperature heat pipes neglects the hydrodynamics of the vapoi flow and,

therefore, cannot predict the vapor pressure and temperature variations

along the heat pipe. Kuramae [12] and Tilton et al. [13] did not

include vapor flow in their models. Bowman et al. [14] and Jang et al.

[15] applied too complicated vapor flow models which lead to lengthy

computation time and only represent the earliest stages of heat pipe

transient behavior effectively. The model developed by Seo et al. [16]

is impressive. However, this two-dimensional (axial and radial) model

cannot predict the transient behavior of a heat pipe with angularly

nonsymmetric boundary conditions. It would be desirable to assimilate

all of the current works by incorporating the strongest features of each

previous approach into a state-of-the-art model.

A transient three-dimensional numerical method is desired to model

the heat conduction through the heat pipe wall and wicks, including the

liquid in the grooves. Thibault [17] gave a comparison of nine

6



numerical schemes for the solution of the transient three-dimensional

heat diffusion equation. The major drawback of the pure explicit scheme

is that the stability criterion Ar/(AX)2 is very small and should not

exceed 0.5. The computations may become prohibitively expensive because

of the need to employ very small time steps. On the other hand, the

pure implicit scheme cannot be used efficiently for the solution of

multidimensional problems. In three dimensions it necessitates the

solution of large sparse matrices, which requires extremely long

computation time. After considering the relative accuracy, computation

time, and the computer core storage requirement, Thibault concluded that

alternating-direction- implicit (ADI) finite-difference methods offered

the best compromise. The ADI methods only require solving tridiagonal

matrices, so they have a tremendous advantage in computation time

compared to the pure implicit method. Chang and Colwell [11] and Jang

et al. .[15] used two-dimensional ADI methods to model heat pipe

transients with great success. The conventional, two-dimensional ADI

method is unconditionally stable. However, when extended to three

dimensions, the conventional ADI method is conditionally stable, and

very small time steps are required to ensure convergence and stability.

In heat pipe modeling, a small Ar is needed due to the slender geometry

of the heat pipe, and only a very small time step At (about O.O01s) can

be used with the conventional three-dimensional ADI method. Chang et

al. [18] developed a new three-dimensional ADI method by modifying the

conventional ADI method with an f-factor (O<fcl). This modification

allows the time step to be increased by about 2 orders of magnitude

without significantly compromising the accuracy of the numerical

solution. They also showed that this new ADI method yields much higher
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accuracy than the well-known Douglas' [19] and Brian's [20] ADI methods.

Details of this new ADI method, which was used to model the heat

conduction through the heat pipe wall and wicks, will be introduced in

Chapter 2.

In the numerical solution of heat conduction problems with phase

change (Stefan's problem) by finite differences, enthalpy methods

[21-25] or heat capacity methods [26-30] can be used. The former

methods require either an explicit procedure which may lead to

convergence problems, or iteration at each time step if an implicit

procedure is used. The latter methods are subject to the problem of

jumping the latent heat peak, necessitating the use of very small time

steps to avoid underprediction of the phase change time. Recently,

Hsiao [31,32] proposed a new finite-difference method for Stefan's

problem. In his scheme, the equivalent heat capacity at a node is a

function of the temperature at that node and all the surrounding nodes.

Hsiao concluded that his method can avoid the problem of jumping the

latent heat peak and allows the use of a relatively large time step.

Hsiao's method was tested, but a large energy balance error was found.

Pham [33,34,35] suggested a simple method which includes features from

both the enthalpy and heat capacity methods. Comparing this method with

other existing methods for test problems with exact solutions, Pham

pointed out that most of the methods agree to within 0.2% with the

analytical result, except for Hsiao's method which yielded results with

up to 22% error. The low accuracy of Hsiao's method could be due to its

ambiguous theoretical basis. Pham also concluded that his method is

much faster than other methods. However, Pham's method has a

singularity problem in finding the equivalent specific heat. In this
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research, we adopted the best features of Pham's method and made some

modifications to improve on its weak points. Compared with analytical

solutions, the present method for melting and solidification was found

to have very good accuracy without the singularity problem of Pham's

method.

The vapor flow in the evaporator of a heat pipe is dynamically

similar to pipe flow with blowing through a porous wall, while the

condenser section is analogous to flow with suction. The axial vapor

mass flow increases along the length of the evaporator region to a

maximum value at the end of the evaporator; it will then decrease along

the condenser region. The behavior of the vapor flow in a heat pipe is

also similar to that of a gas flowing through a converging-diverging

nozzle. In the heat pipe the area remains constant but the mass flow

varies. In a nozzle, the mass flow is constant but the cross-sectional

area is changed. There are many theoretical investigations of heat pipe

vapor dynamics [36-45]. lost of this research work focuses on the vapor

flow itself instead of studying the vapor flow phenomena coupled with

heat pipe transients. The majority of these vapor flow models are very

complicated and impractical because their calculations require

prohibitively large amount of computer time. Bowman [46] reached a very

important conclusion that since the response time of the vapor dynamics

is very short compared to the heat transfer response time of the heat

pipe wall and wicks, the vapor flow can be modeled as a quasi-steady

process. He also studied the compressible vapor dynamics in a heat pipe

experimentally using air flowing in a porous tube with blowing and

suction along the wall. He modeled the vapor flow using a numerical

solution to the axisymmetric, unsteady Navier-Stokes equations and a

9



steady one-dimensional solution technique. Bowman concluded that it is

adequate to treat the vapor flow as steady and one-dimensional, and he

also provided suitable vapnr pressure drop correlations. In our

research, this steady, one-dimensional vapor flow model was used and

coupled with the evaporation and condensation in the heat pipe.

The transient response of a heat pipe under normal operating

conditions is mainly controlled by its thermal capacity, conductance,

and vapor temperature drop, and is only slightly influenced by the

liquid dynamics. However, liquid dynamics become very significant when

dryout and rewetting occur in the wick. The dryout phenomena can cause

a dramatic temperature increase at the evaporator section and may affect

the overall heat transport device. To predict dryout of the wick, a

detailed liquid flow model in the wick is needed. Beam [47] and Ambrose

[48] et al. investigated the transient behavior of the liquid flow in a

heat pipe wick using a one-dimensional flat-front model. Their models

for the liquid flow utilized a simplified, lumped-parameter solution to

the energy equation to predict the temperature response and determine

the mass flux of vapor out of the evaporator region. Both Beam [47] and

Chang and Colwell [11] concluded that the transient response of the

working fluid in screen wicks is so fast that acceleration terms in the

momentum equation for the liquid are negligible. However, dryout

depends on the heated zone and the instantaneous local saturation.

Thus, if dryout is to be accurately predicted, the temporal dependence

of the saturation distribution must be taken into account. Ambrose [49]

developed a technique utilizing X-ray radiography to measure liquid

distribution in the porous wick structures of a heat pipe with beryllium

walls. He also presented a new transient liquid flow model to predict

10



the continuous saturation distribution in the wick structure. The

measured saturation distributions compared favorably with those

predicted by the liquid model. However, solution of this new transient

liquid flow model requires knowledge of the saturation dependence of the

capillary flow properties, which can only be determined by experiment.

Kamotani [50] and Hwangbo et al. [51] developed two very similar liquid

flow models for a grooved heat pipe. Their models can predict the

variations of liquid meniscus contact angle and liquid pressure

variation along the heat pipe. However, they assumed the liquid

meniscus is always attached to the top of the groove side walls.

According to the experimental verifications given by Ogushi et a]l [52],

this assumption is not correct. They also ignored the effect of vapor

pressure variation on the liquid meniscus contact angle. This is not a

good simplification for high temperature heat pipes where the vapor

pressure drop is always the dominant one. A complete capillary liquid

flow model for a screen covered groove like the one we recommended in

this research is urgently needed in the near future to predict the

dryout and rewetting behaviors of a heat pipe with this type of wick. A

good capillary liquid flow model should include the effect of vapor

pressure changes on the liquid meniscus contact angle and also be able

to predict the saturation distribution analytically.

Kamotani [53] analyzed the thermal behavior of the condenser

section of a heat pipe with axial rectangular grooves. Some of the

vapor condensation occurs on the land areas between grooves. The liquid

forms a thin film on the land surface, and heat is removed from the

vapor through the liquid film. When the heat pipe is operating, the

liquid in each land area is drawn continuously into the grooves by
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capillary force and then transported to the evaporator section along the

grooves. Because of viscous drag, liquid flow in the grooves suffers a

pressure drop, and consequently the curvature of the liquid free surface

varies along the path. This meniscus variation will influence the

motion of the liquid film on the land and thus the condensation rate.

Kamotani claimed that the thickness of the liquid film on the land

surface is only on the order of several microns. In this research, we

neglected the thermal resistance of the condensed thin liquid film

because it is miniscule when compared with the resistance of the heat

pipe wall.

12



CRALPTEI 2

AN IPD OVED ALTERNATING- DIRECTION- IPLICIT NETHOD

The conventional three-dimensional alternating-direction implicit

(ADI) method is modified by introducing an f-factor (O<f<l). This

modification allows the time-step limit be increased by a factor of 1/f

with the solutions remaining stable and retaining high accuracy. This

new method is tested for two different boundary conditions: a constant

heat flux and a sudden heating of the surface to a constant temperature.

In addition, it is compared with the popular Brian and Douglas ADI

methods. Results show that the new ADI method has higher accuracy and

requires less computer storage than the Brian and Douglas ADI methods.

2.1 Introduction

The diffusion of heat in solids has numerous applications in

various branches of science and engineering. Generally, there are two

different approaches to deal with this type of problems: analytical and

numerical approaches. The analytical methods are usually only

applicable to linear problems with simple geometries. On the contrary,

the numerical methods are useful for handling practical problems

involving nonlinearities, complex geometries and/or complicated boundary

conditions.

Thibault [17] gave a comparison of nine numerical schemes for the

solution of the transient three-dimensional heat diffusion equation.

13



Considering the relative accuracy, the computation time, and the

computer core storage requirement, he recommended that

alternating-direction implicit (ADI) finite-difference methods are among

the most preferred methods. The conventional two-dimensional ADI method

was introduced by Peaceman and Rachford [54] in 1955. The advantage of

the ADI method is that only tridiagonal matrices need to be solved.

However, when extended to three dimensions, the conventional ADI method

is conditionally stable and very small time steps are required to ensure

convergence and stability. Other forms of the ADI method include the

Douglas method [19] and the Brian method [20]. Douglas and Brian ADI

methods are unconditionally stable, they possess the advantages of the

implicit scheme with no limitation on the size of the time step.

However, Thibault [17] pointed out that these two unconditionally stable

ADI methods cannot retain good accuracy if the time step is more than 2

times larger than the time-step limit required for the conventional ADI

method.

In this research, the conventional three-dimensional ADI method is

modified by an f-factor (O<f<l). A very important characteristic of

this modification is that it is consistent with physical considerations,

and is not just based on mathematical manipulations. This modification

allows the time-step limit to be increased by approximately a factor of

1/f without compromising significantly on the accuracy of the numerical

solution. This new ADI method is presented and compared with the Brian

and Douglas ADI methods for two cases where analytical solutions are

available. Compared with the Brian and Douglas methods, this new ADI

method has higher accuracy when large time steps are used. Also, the

present method requires less computer storage.

14



2.2 lathematical Formulation

First, we will look at of the formulations of the existing

three-dimensional ADI methods: conventional, Brian and Douglas methods.

Then, the proposed new ADI method designed to overcome the shortcomings

of these existing ADI methods will be introduced.

The differential equations for the three-dimensional heat diffusion

equation can be written as

Ir 8 a2T 82T 82T

Introducing dimensionless parameters:

x 7 , ,=Z=-

T T at

Eq. (1) becomes

We + + 7 -1 (2)

Conventional ADI lethod

In the conventional ADI method, the heat diffusion equation is

solved implicitly in turn in the three coordinate directions for

one-third of the time increment each [55]. The basic finite-difference

15



equations for each of the three one-third time steps can be expressed

as:

y 6 ij.7 + i,j,k +z i ~jk (3)

V i j,k-Ui,j,k := 2 + 62 V2 + 62jU (4)
A-r13 x i,jk i,j,k z i,j,k

Si4iykiLk = 2y2V 6 2+n+l (5)
Ar13 j x i,j,k + Vi,j,k z i,j,k

For convenience of analysis, we let AX=AY=AZ. After rearranging

Eq. (3), it becomes:

SUi+l,jk + 2 + 2] U. U

i-lj~k 11-i 1j~k i+1,j,k

= [•Ar- 4] i,j,k + e-i j-lk+ on,j+-,k + on,j,k-1 + 1ij,k+1 (6)

Similar equations can be easily derived from Eqs. (4) and (5) for

the y- and z- directions. Physically, an increase in the central nodal

temperature or an increase in any one of the neighboring nodal

temperatures at the old time step should, with other conditions

remaining unchanged, lead to an increase in the central nodal

temperature at the next 1/3 time step. This implies that all the

coefficients on the right-hand side of Eq. (6) must have the same sign

(positive) as the coefficient of U i,j,k. In other words, negative

coefficients on the right-hand side of Eq. (6) make the equations

physically unrealistic and may lead to low accuracy [56]. Same

16



statements can be made regarding to the equations for the y- and z-

directions.

On the right-hand side of Eq. (6), only the coefficient for Oijk

could be negative if the time step Ar is large. In order to have

positive coefficient for Oi,j,k it is required that:

Ar o.75 (7)

Since AX=AY=AZ, the equations for the y- and z- directions require

the same condition in Eq. (7) to hold. The other important thing we

need to consider is the stability problem. Ve define the stability

parameter A as follows:

A = Ar (8)
(AX)

2

The stability criterion for the conventional three-dimensional ADI

method is [55]:

A < 1.5 (9)

Equation (7) is the condition for the solution of the conventional

three-dimensional ADI method to be physically realistic and have good

accuracy. Equation (9) is the criterion for the solution to be stable.

The main disadvantage of the conventional ADI method is that it is

conditionally stable and very small time step is required.

17



Brian's AkDI ethod

The method proposed by Brian [20] is similar to the conventional

ADI method. However, the successive approximations of the temperature

are calculated at the half-time step. The basic equations of Brian's

ADI method are given as follow:

Ui''kr/2' = b2xUi,j,k + 6yi,j,k + 62 zi0jlk (10)

ik- Yi,j ,k =b2i, 2 20 ,kA~r/2 u621 y + 15 yV..j~ + 62Z011 k 11

- / kj,k ,j,k 2 i
Ajk k - _ bx=ijk + yi,j,k + azi,j,k (12)

Subtracting Eq. (10) from Eq. (11), we have:

Vi~j*k-Ui~jk =62.2o

' ' yi,j,k- y 0i,j,k (Ila)

Subtracting Eq. (11) from Eq. (12), we have:

i~ ~ +0"~ iVjlk = 6201+1 - 20nir/2 6z i,j,k z i,jk (12a)

Eqs. (10), (1la) and (12a) are the simplified equations suggested

by Brian. After rearranging these equations, the following equations

can be obtained:
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U ~+ [2 (X)2+2]UU
-i lj [1-) +k2] Ui ,j,k Ui+l,j,k

__ir 4 0)k ,j-1,k ij+1,k i,j,k- 1 ijk+1 (13)

Vi,jl,k + [ )2 + 2] Vijk - Vij+lk

Brian soe y- h issh ik u ij+t, (14

+ _r r.Ij,.... k L.Pij 1k - on j Ik+

i oj~k-1 AZ + 2] 6+1 1+

r4(AZ) 2  r2(AZ) 2 2  on6  n (15)
LAT] V i~jk + +A~ 2] jn k -k i,j,k-1 I .j.k+I

Brian showed that his scheme is unconditionally stable. However,

there also exist negative coefficients on the right-hand sides of the

discretization equations (13)-(15). As we mentioned earlier, these

negative coefficients are physically unrealistic.

Douglas ADI method

Another unconditionally stable three-dimensional ADI method was

presented by Douglas [19]. The algorithm is given by the following

three equations:

=ri 2 + ik ~y~~ + zijk(16)

V i,jk jzk 2
= x i,j,k + 0ijk] + 6y i,j,k + k

+ 62zb .j)k (17)
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en+1 _,.,
Ai • ikui,jkk +O•jk1 + = 62 + 2A7 x [U Vi,j,k + 1, by[ lik+ij~kl

2[n +1 on (18)

Subtracting Eq. (16) from Eq. (17), we have:

i -= ub y [ )V,j,k- ij,k] (17a)

Subtracting Eq. (17) from Eq. (18), we have:

A1J 2k- ziijjkk - 050 (18a)

Equations (16), (17a) and (18a) are the simplified equations and

they can be rearranged as:

-
0 .5 U 1~ + I AX + 1] Uik- 0.5 Ui~~~- An o

5il,j,k A + I i,j,k +0.5 ljk

,n -- , + o. , + on. (1,)
1)3-1)k i~j+1,k +Oi~j,k-1 i,j,k+1 19

-0.5 Vi,j1l,k + [AT-2 +1] Vi,j,k- 0.5 Vi,j+l,k

2•+I 2
Tl ] U jk Ojk -0.5 On I 4k - 0.5 O'ý,jI k (20)

0. +1 + [(AZ) +1] 6P 0.56P
.ijlk- 1 ATiljlk - i,j,k+0

AZ2] (21)
= [ ] Vi,j,k + O,,j,k - 0.5 ni,jkI - 0.5 ni,j,k+1
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The unconditional stability of this algorithm was proved by Douglas

[19]. However, as in the Brian ADI method, the Douglas ADI method has

negative coefficients on the right-hand sides of the discretization

equations (19)-(21).

New MI lethod

As we have seen above, the three existing ADI methods all have

shortcomings. The conventional ADI method is conditionally stable and

very small time steps are required to satisfy the stability criterion.

All three ADI methods have a common problem: negative coefficients in

their discretization equations which are physically unrealistic.

In light of the above observation, an improved ADI method is

proposed. The conventional three-dimensional ADI method is modified by

introducing an f-factor (O<f<l). Consider a control volume as shown in

Fig 2.1, the heat fluxes from the directions in which the equation is

implicit are multiplied by a factor (3-2f) and the heat fluxes from the

remaining four directions are multiplied by a factor f. As we can see,

the total heat flux counted in each direction through a full time step

remains unchanged. The finite-difference Eqs. (3)-(5) of the

conventional ADI method are modified by a f-factor and become the

following equations:

Ai i'j'k = (3-2f) x 0k + f b2y ij• + f 62Gilk (22)

Sjjr/is = f 611. y e,2Ik ,jk (3
V i,j,k- Uiljl ,j,k+ (3 2 ) b + f b2U2 )

xUi,j,k y i,j,k + z i,j,k
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Figure 2.A The f-factor modified ADI Method
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+1,k -Vi,j,k = f 62x k + f 2ybij + (3-2f) 2 02n+24
z i~j~k (24)Atr/3 X V09jyk ,jlk z i,j,k

After rearranging Eq. (22), the following discretization equation

can be obtained:

(3-2f) Uil,j,k + [-()r2 + 2(3-2f)] Ul,j,k- (3-2f) Ui+l,j,k

01,j-,k + f ei,j+ý,k + f O,j,k I + f ei'j,k+1 (25)

Similar equations can be easily derived from Eqs. (23) and (24) for

the y- and z- directions. On the right-hand side of Eq. (25), only the

coefficient for central nodal temperatures at previous time step could

be negative. To avoid it from becoming negative, we require:

Ar 0.75 (26)

The stability criterion can be determined by the Von Neumann

method. Assuming that there exists an error function Ep,q,r,n at each

nodal point in the following form [57]:

Ep,q,r,n= exp(ifilpAX)exp (iO2 qhY)exp(ifl 3 rhZ)fn (27)

where the parameter ý is the amplification factor and n = r/Ar, the

error will be bounded provided that:
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1

This is the condition for the solution to be stable. It can be

shown for these linear problems with constant coefficients that the

error function E also satisfies the finite-difference equationp,q,r,n

(25) and two similar equations for y- and z- directions. With AX=AY=AZ,

substitution of Ep,q,r,n from Eq. (27) into these equations gives:

3/A -4(f)sin2(# 2 AX/2) -4(f)sin2 (3AX/2) (28)

3/A +4(g)sin'(filAX/2)

3/A -4(f)sin2 (filAX/2) -4(f)sin2 (fi3AX/2)

3/A +4(g)sin4(fi2 AX/2) (29)

3/A -4(f)sin2(fllAX/2) -4(f)sin2(fl2AX/2)

3/A +4(g)sin (#3 AX/2)

where g=3-2f.

These f,, f2 and ý3 are the amplification factors for the

finite-difference equations for the x-, y- and z- directions,

respectively. Since these equations are used alternately, the stability

condition should be:

Rearranging ý1ý243 as follows:,

24



3/A -4(f)sin2 (2AX/2) -4(f)sin2(fi3AX/2)

Y•243= [3/A +4(g)sin2 (f 2 AI/2)

"3/A -4(f)sin2 (#lAX/2) -4(f)sin2 (#3AX/2)

3/A +4(g)sin2 (fi3AX/2)

"3/A -4(f)sin2(#lAI/2) -4(f)sin2(p 2 AX/2)
3/A +4(g)sin2 (fiAX/2)

( a] x b]x Cc]

the stability condition can be written as:

'al, blcl < 1

The stability criterion can be obtained from either one of the

following three conditions:

:ajll, jbjl~ or jcjl

For the condition lal~l, since the value of a is always less than

unity, we need only to consider the condition a>-l. This leads to:

1.5

(f)sin (63AX/2)- (g-f)sin2(fi2 AX/2)

It should be mentioned here that the parameter A defined in Eq. (8)

is always positive. The right-hand side of the above equation has a

minimum value when sin2 (f3AX/2)=1 and sin2 (fi2 AX/2)=O. So, the stability

criterion becomes:
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1.5 (31)- T_

Comparing Eqs. (26) and (31) with Eqs. (7) and (9), the time-step

limit for the conventional ADI method can now be increased by a factor

1/f by using this new ADI method. The computational results which will

be discussed later show that this modification allows the time-step

limit to be increased by 2 orders of magnitude with f=O.O1 and the

solutions still remain stable with high accuracy.

Also, it should be mentioned, this new ADI method only requires

two-thirds of the computer storage compared to the Brian or Douglas

method. This is because only the temperatures at one intermediate time

step need to be stored.

2._3 Results and Discussions

To validate the present new ADI method, the finite-difference

solutions obtained are tested for a simple geometry with two different

boundary conditions: a constant surface heat flux and a sudden heating

of the surface to a constant temperature. In addition, it is compared

with the Brian and Douglas methods.

Consider a parallelepiped (-L1 S x < L1 , -L2 S y ý L2 , -L3 • z <

L3), shown in Fig 2.2, having constant thermophysical properties and

initially at a uniform temperature 00=1.0. At time T>O, the

parallelepiped is allowed to have heat flow through its boundaries. To

obtain the temperature distribution within the parallelepiped, equation

(2) must be solved with the following initial conditions:
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x

Figure .2.2 Coordinate system: parallelpiped
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-1 <X<1
at r= 0, 0=1 for -L' < Y < L (32)

-L Z < L'

where L is chosen as the characteristic length Lc, Ll= L2/L 1 , and

L3/L1 •

Because of symmetry, only the region O<X<1, O<Y<Ll, and O<Z<L' need

to be solved. The boundary conditions are:

0d) o O) = = 0 (33a)

00 80
X=1 Y=L'= N)Z=L= qw (33b)

or )X=I = O)¥=L = 0)Z-L' = ow (33c)

where q= = dimensionless surface heat flux.

In this report, each numerical method will be used to solve the

three-dimensional heat diffusion equation for the two different boundary

conditions. To evaluate the accuracy of the various methods, an average

temperature erior is used. It is defined as the square root of the

average of the squares of the error between the predicted temperature

and the analytical temperature. It is given by:

E E [0i j~- 0a
= i=1 =1 k=1 ijk (34)

IJK
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where 0a is the analytical dimensionless temperature.

Case I - Constant Surface Heat Flux

Consider a parallelepiped, initially at a uniform temperature

00=1.0. At time r=O, all faces of the parallelepiped are exposed to a

constant surface heat flux qw= 0.5. For a parallelepiped exposed to a

constant surface heat flux, the temperature distribution as a function

of time can be represented by the summation of three one-dimensional

solutions [17]:

0(X,Y,Z,r)- 00

+ 2qf•F f E [ierfc(( 2m+l)+X)+ierfc(2m+)Xm=O 2 )+ierfc(

O (2m+l)L'+Y (2m+l)L½-Y
+ E [ierfc( )+ierfc( 2

m=O 2.r. 2/f•
(2m+I)L'+Z (2m+I)L'-Z

+ E [ierfc( )+ierfc( )]} (35)
m=o 2 & 2vFT

Presented in Fig 2.3 are the results obtained for a cube exposed to

a constant surface heat flux qw= 0.5 at time r = 2.0. Twenty nodal

points are used in each direction for this calculation. According to

Eq. (7), the time-step limit required for the conventional ADI method

(f=l.0) is 0.001875. In Fig 2.3, the solutions from the conventional

ADI method have very good accuracy with time step 0.002, but they become

unstable as time step is increased further. The Brian and Douglas

methods are unconditionally stable, but the negative coefficients in the

discretization equations cause their solutions to be physically

unrealistic. The results show that their solutions have good accuracy
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if time step is smaller than 0.5 but become more and more inaccurate if

the time step is increased further. On the contrary, the proposed new

ADI method with f = 0.1 and f = 0.01 is very accurate even when a time

step of 2.0 is used. The average temperature error is less than 0.007.

It can be seen from Eqs. (26) and (31) that this f-factor ADI method has

a much higher time-step limit than-the conventional ADI method.

Shown in Fig 2.4 are the results at time r = 10.0 for a cube with

the same boundary condition of a constant surface heat flux -w= 0.5.

For very small time steps, every method yields poor accuracy. This is

due to the large amount of calculations involved and the accumulation of

round-off errors. For time steps greater than 0.01, the Brian and

Douglas methods are always stable but they yield poor accuracy with

average temperature errors up to about 0.15. The new ADI method with f

= 0.01 predicts the results exceptionally well, the average temperature

errors are always less than 0.02 for time steps larger than 0.01.

However, the new ADI method with f = 0.1 only predicts well up to a time

step of 0.5. This is because the new ADI method with f=0.1 has a lower

time-step limit compared to that with f=O.01.

Figure 2.5 shows the variation of the average temperature error

with the f-factor at r = 10.0 for a cube with the same boundary

condition of a constant surface heat flux qw= 0.5. It can be seen, as

long as the solutions do not diverge, the temperature errors remain

almost the same with different values of the f-factor. In other words,

the value of f we chose does not influence the numerical results as long

as the solutions remain stable. The results for very small time step

Ar=0.001 always have larger errors. This is due to the accumulation of

round-off errors we have mentioned earlier. Also, we can see that the
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solutions are more stable with smaller values of the f-factor in the

sense that much larger Ar can be used.

Case II - Constant Wall Temperature

In this case, the parallelepiped, initially at a uniform

temperature 00=1.0, has its surfaces suddenly increased and maintained

at a constant temperature OW = 2.0. The analytical temperature can be

easily obtained by using the method of separation of variables [58]:

MD MD 2
O(X,YZ,r)= 0+w + EnElE a mlexp[-M.nlr]

m=ln=ll-1

cos [(2m-2)!X]cos[X(2n-21y]cos[E(2121)iZ] (36)
2 3

where a - 64(0 0w) sin,2l), sin2l)r sin{(21-l)
r3 (2m- 1) (2n- 1) (21- 1)

2 = [(2m), 2+ [(2n-)72+ [(21-1)7 2
mn [ 2 2 3 L

Presented in Fig 2.6 are the results obtained for a cube at time 7

- 0.2. At this time, the temperature field is still undergoing

transient development. Similar to Case I with constant surface heat

flux, the conventional ADI method becomes unstable if the time step is

greater than 0.002. The Brian and Douglas methods predict the

temperature field accurately only with a time step less than 0.02.

Their methods become inaccurate if the time step is increased beyond

0.02. The new ADI method with both f=O.1 and f=0.01 always yields

better accuracy than the other methods, the average temperature error

increases only slightly with the time step and is about 0.03 with a time
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step of 0.1.

Shown in Fig 2.7 are the results for a cube at time r = 1.0. At

this time, the temperature field has already reached steady-state. The

Brian and Douglas methods predict the steady-state temperature field

rather poorly if the time step is greater than 0.1. The average

temperature error is about 0.5 with a time step of 1.0. On the

contrary, the new ADI method predicts the steady-state results very

well. With a time step of 1.0, the new ADI method yields solutions with

an average temperature error about 0.024 for f=0.1 and about 0.016 for

f=0.01.

2.4 Concluding Remark

In this chapter, an f-factor ADI method for solving transient

three-dimensional heat diffusion problems is introduced. An important

characteristic of this new ADI method is that the resulting

finite-difference equations are consistent with physical considerations.

Compared to the conventional ADI method, this modification allows the

time step to be increased by about a factor of 1/f without compromising

the accuracy of the numerical solution. Compared with the conventional

ADI method and the Brian and Douglas ADI methods, this new ADI method

yields higher accuracy and requires less computer storage.
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CHAPTEI 3

NUMERICAL MODEL

A numerical model and solution techniques have been developed to

predict the transient behavior of a high-temperature axially grooved

heat pipe with thermal energy storage. The heat transfer through the

pipe wall and wick, including the liquid in the grooves, was modeled as

three-dimensional in the radial, angular and axial directions. The

liquid and vapor flow dynamics were modeled using quasi-steady,

one-dimensional methods. The heat transfer within the phase-change

material, which was encapsulated in a cylindrical container, was m3dele,!

as two-dimensional in the radial and axial directions. A nodal system

used to develop finite-difference approximations was depicted in Figs

3.1a and 3.lb. Finite-difference equations !iave been derived for

three-dimensional heat transfer under the following assumptions:

(1) The heat transferred through the wick and working fluid is by

conduction only, since liquid flow velocity is very low and

the liquid thermal conductivity is very high.

(2) The grooves are nearly filled with liquid. This is a good

assumption for high temperature heat pipes under normal

operation without burnout, because the thermal resistance of

liquid metal is much smaller than that of the heat pipe wall.

(3) The top lands of the groove structure in the evaporator

section are adiabatic because no evaporation occurs.

(4) The thermal resistance of the condensed liquid on the top

lands of the groove structure in the condenser section is very

small compared to the thermal resistance of the solid wall and
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Vapor Adiabatic

Space Interface

Figure 3.1b Nodal map of the heat pipe - end view
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can be neglected.

(5) The liquid-vapor interface temperature is equal to the local

vapor temperature, because the thermal resistances due to

evaporation and condensation are very small.

(6) The thermal resistance of the condensed liquid on the PCI

cylinder is much smaller than that of the phase-change

material, the surface temperature of the PCI cylinder is

assumed to be equal to the vapor temperature at the same axial

location. Hence, only a two-dimensional analysis is needed to

calculate the temperature and heat transfer within the PCI

cylinder because of angular symmetry.

A variety of boundary conditions for the thermal coupling between

the heat pipe and its heat source and sink have been included in the

numerical model:

Evaporator surface

(1) variable uniform heat flux, and

(2) variable uniform temperature.

Condenser surface

(1) radiation,

(2) radiation and variable uniform heat flux, and

(3) radiation and partially-covered variable uniform heat flux.

3.1 Heat Conduction Through Pipe Wall and Wick

The improved three-dimensional ADI finite-difference method [18]

was used to model the heat conduction through the wall and wick,
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including the liquid in the grooves. The advantage of the ADI method is

that only tridiagonal matrices need to be solved. However, the

conventional three-dimensional ADI method is conditionally stable and

very small time steps are required to ensure convergence and stability.

Since small Ar is needed due to the slender geometry of the heat pipe,

only very small At (about 0.O01s) can be used with the conventional ADI

method. Other forms of the ADI method include the well-known Douglas

[19] and Brian ADI methods[20]. Douglas and Brian ADI methods are

unconditionally stable, they possess the advantages of the implicit

scheme with no limitation on the size of time step. However, Thibault

[17] pointed out that these two unconditionally stable ADI methods

cannot retain good accuracy if the time step is more than 2 times larger

than the time-step limit required for the conventional ADI method. The

conventional ADI method was modified with an f-factor (O<f<l) as

introduced in Chapter 2. This modification allows the time step to be

increased by about two orders of magnitude without compromising

significantly on the accuracy of the numerical solution. It also was

shown that this new ADI method yields much higher accuracy than the

Brian and Douglas ADI methods.

The conventional Douglas and Brian ADI methods have a common

problem: negative coefficients in their discretization equations which

are physically unrealistic [56]. After the three-dimensional

finite-difference equations of conventional ADI method with cylindrical

coordinates are modified by an f-factor, they become the following

equations:
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I" 11 
-~j~ (3-2f 62Tn+1/3 + f 62 Trn 62Tn (8

a At3 (32f)r i,j,k 0 i~j~k + f z i,j,k (8

Tn+2/3 Tn+1/ 3  /
I Ži~, 3 k~ = 2Tn+1/ + (32f) 213 + f b2Tn1+/ 3  (9

a f r ~j~ (32f)0Tij,k z i,j,k (9

1F~ i r~ k=2n+ 2/ 3  + f 2T+2/3 + f 3 2f T 2f' 40
a At313K fbr iljk 6 i,j,k (32)z i,j,k (0

In the above equations the superscripts n, n+1/3, n+2/3, and n+1 denote

times nAt, (n+l/3)At, (n+2/3)At, and (n+1)t, respectively. After

rearranging Eqs. (38)- (40), the following discretization equations can

be obtained:

3pcri(&r) 2  ArAr~iT+
+ (3-2f) ki (r..) + (3-2f) ki(r)] - ll/

at _(ri+i,j,k
Ar) Tn+l/3  - .(.Ar) Tn+1/3(3-2f) kir+) i- 1,~ (3-2f -~2 i+1,j,k

3pcr (Ar) 2  (r 2  ' 'r. (Ar) 2
fkJ- ~+k+ (r 2 f (kk- +k k) 1 2 T~j~

(k k.)ri(AO) (Az) jk

+ [f k. jr(Ar) 2  i~j.lii + [ f k +r(d 2 T'l~j1+1k

ri (tr) 2 nri(A.r) 2 n(41)

+ (f z k ~ ~ - + [ f k,.----~-]T
k- Az)2 ~j~-1(Az) 2- i,j,k+1

3pcr 40 2+ (3-2f) k. + (3-2f) k.+ Tn2/
at i,j,k

(-2f) k. n23)K Tn 2/3
(3 j- i,j-1,k -(3-2f) Xj ~~~

3pc(r 1AO)2  f Ar )r i(a0)2 -f . Ar) r i(A0)2

at ~ r1 ---) (Ar) 2  (r
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f (kk+ kk .(z2] 1/3
k- k) (AZ) 2 i,j,k

+[fAri(r0)2 - kn+l/3  )Ar ri(AO)2 Tn+1/3

(Ar) in1,jkk/r3-)*----2-JT~+ f ki_(ri+ ) Ar-) 2 J + [ f (Ar) 2 r+1,jk

(ri A)2 n+1/3 (riA0) 2  Tn+1/3 (42)
+ [f kk- (Az)2 i,j,k-1 + [ f kk+ (Az)2 i,j,k+1

3pc(Az) 2

[ t + (3-2f) (kkkk+) ] i
- (3-2f) kk Tn~l - (3-2f) kkTn.,+l

( - i,j,k-1 k+ i,j,k+l

3pc(Az)2 Ar 2 Ar
[At f k.A(ri+-) r(rz) fk(A)I- ri(Ar)2 i ri(Ar)2

f (kj. A (AZ)2  1 Tn+2/3

AJ_ +A (r iAO)2  i~j~k

. Ar (AZ 2  Tn+2 / 3  + fk.(ri-) i(A2z)2

+[ f ki-(ri+-2) 2 i-1,j,k + [ f rpr)ri(Ar)

,n.+2/3
'i+l,j,k

2 Tn+2 / 3  (Az)2 Tn+2/3 (43)
+ k . (Az)2 + f k j +

(riA 0)2 + I (riA g)2,

'Where p's and c's are the nodal density and specific heat based on local

properties and k's are the thermal conductivities based on the harmonic

mean of two relevant nodal conductivities.

On the right-hand sides of Eqs. (41)-(43), only the coefficients

for central nodal temperatures at previous time step could be negative.

It was shown [18] that the time-step limit to avoid the coefficients
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from becoming negative can now be increased by a factor of 1/f. It was

also shown [18] that the stability criterion can be increased by the

same factor. So, it is clear that the time-step limit for the

conventional ADI method can now be increased by a factor of 1/f by using

this new ADI method. The computational results showed that this

modification allows the time-step limit to be increased by 2 orders of

magnitude with f=0.01 and the solutions still remain stable with very

high accuracy.

The resulting finite-difference approximations for all nodes form a

nonhomogeneous set of linear algebraic equations for each one-third

time-step:

For the first one-third time-step,:

0 0 0 - T+1/3 D
B0 00 0 0 l"jkD~1 1 1,J,k 1

A2  B2  C2  0 0 0 0 0 2,+j/ 3  D2 2 2 2,j,k2

0 A3  B3  C3  0 0 0 0 Tn+3/3  D3

Tn+I/ 3  (44)
i i i i,j,k D

0 0 0

0~~ ~ ~ 000AB ,+1/3 DANR NR NR,j ,k DNR

for the second one-third time-step,:
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B1  C1  0 0 0 00 T0IU2/ D
19.2k

A2 B2 C2 0 0 0 0 0 e,2kD

0 A I, Tn.+2/3 D
0 A3 33 c3 0 0 0 0 D3

A. B. C. Tn+2/3 = Dj (45)

0 0 0

000 0 Tn+2/3
0 0 ANO BNO i,NO,k- DNO,

and for the third one-third time-step:

Bo C1 0 0 0 1,3,1D 1
B 1OO 0 00 ij I,

11 I t II 
itA 2 B 2 C2 0 0 0 0 0 iTn 2 D

0 A3  B3  C3  0 0 0 0 D.3 3 3i ,j,3 D3

if of IfT +Io ( 6

Ak Bk Ck .+ljk (46)

0 00 0 B

NZ BNZ i,j,NZ DNZ

Since each coefficient matrix in Equations (44-46) is tridiagonal,

the sets of equations can be easily solved by using the tridiagonal

matrix algorithm (TDKA) with known initial and boundary conditions.
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This algorithm is very efficient for digital computation.

3.2 Melting and Solidification of PCI

Since the thermal resistance of the condensed liquid on the TES is

much smaller than that of the phase-change material, the surface

temperature of the TES is assumed to be equal to the vapor temperature

at the same axial location. Hence, if the PCI is encapsulated in a

cylindrical container, only a two-dimensional analysis is needed to

calculate the temperature and heat transfer within the PCI because of

angular symmetry.

In the numerical solution of heat conduction problems with phase

change, the heat diffusion equation can be formulated in either of the

following two ways:

C(T) R = div [k(T)grad(T)] (47)

or R Z div [k(H)grad(T(H))] (48)

Equation (47) is the basis of heat capacity methods, while Eq. (48) is

the basis of enthalpy methods.

In heat capacity methods, the latent heat is represented by a peak

of small but finite width in the C(T) curve as shown in Fig 3.2. Since

C(T) is not a continuous function of Temperature, if a large time step

is used in the computation, a nodal temperature may jump past the

melting/freezing temperature range in one time step, resulting in the
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latent heat being ignored. This is termed "jumping of the latent heat

peak" and can be a major problem. To avoid it, very small time steps

have to be used.

Enthalpy methods do not suffer from the problem of jumping the

latent heat peak mentioned above because the enthalpy is a continuous

function of temperature as shown in Fig 3.3. However, the major

* "disadvantage of enthalpy methods is that because a high non linear

function, T(H), is involved, an explicit scheme must usually be

employed, with consequent stability problems. Implicit schemes have

been proposed by Longworth [59] and Furzeland [60], but they require

iteration at each time step and are less efficient in terms of computer

time [33,61].

To overcome the problem of jumping the latent heat peak which heat

capacity methods suffer, Hsiao [31,32] suggested that C(T) should be

linearly interpolated between the temperatures of adjacent nodes. Hsiao

considered a typical situation during a phase change process (see Fig

3.4). In this case only three nodes (inside the shades region) have

temperatures within the range of Tm-AT and T3 +AT, and are able to

include the latent heat effect if heat capacity method is applied. All

other nodes next to the fusion front will employ the specific heat of

either the solid or liquid phase, depending on whether the nodal

temperature is less than Tm-AT or greater than Tm+AT, respectively.

Clearly, the latent heat effect is not properly included, and as a

result numerical error always arise. In light of the above observation,

Isiao proposed a new scheme to improve the heat capacity model. The

nodal temperature is not used directly to yield the corresponding

specific heat of the node. Instead, the following averaged specific
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heat, which is derived from the node (i,k) and its surrounding nodes, is

employed:

C(Ti,k) = ¼ [C(Tik Tilk) + C(Ti,k Ti+lk)

+ [C(Ti,k ,Ti,k1) + C(Ti k , Tik+l) (49)

where C(Tik, Ti ,k), for example, represents an adjusted specific

heat, which is determined by the physical status of the material with

temperature within the range of Ti,k and Ti_1,k.

In Hsiao's new heat capacity method, the latent heat effect is

accounted for by using a linear interpolation between the temperatures

of adjacent nodes. As shown in Fig 3.4, the latent heat effect is

included in C(Tilk , Ti~k+l) since the melting/freezing temperature

interval falls in between Ti,k and Ti,k+1. Hsiao concluded that this

new method can avoid the problem of jumping the latent heat peak and

allows the use of a relatively large time step. However, we have tested

Hsiao's new method but a large energy balance error was found. Pham

[35] also pointed out that Hsiao's new method yielded results with up to

22% error compared with the analytical result. The low accuracy of

Hsiao's new method could be due to its ambiguous theoretical basis.

Pham [33-35] presented a simple and accurate method which combines

the good features of enthalpy methods and heat capacity methods. Pham's

method can be used in conjunction with the two-dimensional ADI scheme

using the following procedure:

,
1. At the start of each time step, the enthalpy change AH at each

node is estimated from the known temperature i,k of that node and

52



those of its immediate neighbors at previcus time step.

2. Since the enthalpy is a continuous function of the temperature for

the phase change material, we can determine an estimated new
,

temperature Ti,k from the following equation:

Ti,k=fT[fH(T k) + AHik] (50)

where ilk is the nodal temperature at previous time step.

fT and f. are the temperature and enthalpy functions,

repectively.

3. When the estimated new temperature T ik is known, the equivalent

specific heat of each node can be obtained:
* A *

T A (51)
Ti,k- i,k

4. With the equivalent specific heat ci,k known, we can use the two

dimensional ADI method to find the new nodal temperature Tik"

One of the good features of Pham's method is that it estimates the

new temperature from the estimated enthalpy change to avoid the problem

of jumping the latent heat peak. The other good feature of Pham's

method is that its theoretical basis is clear. However, Pham's method

* has a singularity problem in finding the equivalent specific heat in

step 2. If there is no enthalpy change in a particular node, the

estimated new temperature Ti,k will be equal to the previous temperature
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Tik" Then, we are not able to find the equivalent specific heat from

Eq. (51) due to the singularity problem. Fortunately, we have found a

way around this problem. If the melting temperature is Tm and the

latent heat effect is over a 2AT interval, let HI=fH(Tm-AT ),

2=f11(T +AT )and n+1 1 ,xn + A We redefine the equivalent specific

heat in Eq. (13) as follows:

c if Hn Hn+ 1 <Hi,k ' ik I

(H2-H1)/(2AT) if HI n iH n 1 <2n n+l1
C1 if H1  i,k' 1 i,k > R2

C1 if Hn n+l
ilk I i,k i2

c H if Hn <H<Hn+l (52)
cilk =Tin_~~ ilk < 1 <ilk

or Hn <H n+
ik 2 i,k

or Hn >H>Hn+
i,k i,k

or 1 ,k > H2 >

where cs and cI are the specific heats for solid state and liquid state.

After the modification, Eq. (51) is now used when only one of Hn
ik

or H n+l falls in between HI and H2. In other words, Eq. (51) can only
i ,k

be used when AH* is not equal to zero. Compared with analytical

solutions, this modified method for melting and solidification was found

to have very good accuracy and does not have the singularity problem

Pham's method has.

Consider a one-dimensional melting problem with a solid in a

half-space initially at the melting temperature Ti=Tm=950 K. At time
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zero, the temperature at the front surface of the solid is suddenly

heated to a constant Temperature T0 =1300 K and melting takes place

immediattly. Figs 3.5 and 3.6 show the comparisons of temperature and

melting front between the exact solution and the present

finite-difference solution during the melting process. The physical

variables chosen in the numerical experiment are ks=4.2 W/m-K, k1 =2.1

W/m-K; cs=6280 J/K-kg, c1=7370 J/K-kg; PCX latent heat is 2.58*106 J/kg.

The finite-difference solution is obtained by using 100 equally spaced

elements along a length 1=0.01 m. Time step At=O.Ols and a phase

transition temperature interval 2AT= 2.0 K are used for this example.

The dimensionless time is defined as r=t/(l /'a,). The Stefan number is

defined as Ste=cl(To-Ti)/L and is equal to unity in this problem. As it

can be seen in Figs 3.5 and 3.6, the present solution agrees very well

with the exact solution.

3.3 One-Dimensional Vapor Flow Model

The vapor flow was modeled by using a quasi-steady, one-dimensional

friction coefficient developed by Bowman [46]. In the evaporation

region, mass blowing causes a slight steepening in the velocity

gradients at the pipe wall, leading to an increase in the friction

coefficient. Bowman pointed out that the favorable pressure gradient in

the mass blowing region influences the flow to remain laminar, even for

very large axial Reynolds numbers up to 106. In the condenser region,

where there is mass removal and an adverse pressure gradient, the flow

was found to stay laminar at axial Reynolds numbers around 12000. In
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this research, the vapor flow was always assumed to be laminar because

the maximum axial Reynolds numbers are always much less than 12000. The

correlation of the vapor friction coefficient for laminar flow given by

Bowman can be expressed as:

16 (1.2337-0.2337 e0 "0 3 6 3 Rew) e6)a 2 /5 (53)

where Ma is the Mach number based on the local mean axial velocity U,

Rew is the radial Reynolds number, and Re is the axial Reynolds number

defined as:

Re pvDh Re=pDh

In these expression, p is the vapor flow density, A is vapor dynamic

viscosity, v is the radial velocity at the wall and Dh is the hydraulic

diameter of the vapor core.

The vapor flow was assumed to be compressible, one-dimensional and

quasi-steady. The governing equations for such a flow can be expressed

in terms of influence coefficients as presented by Shapiro [62]:

d~a2  a dz + F (54)
-a 2 Ffa4f Ujh+ Fia (5

with the two influence coefficients given by:

4Ma 2 [1+ ! Ma2 ]
Ffa- 1- Ma2
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2[1+71a 2] [1+ 2Y a2] (56)
1- Ma2

where f is the friction coefficient defined earlier by Eq. (53), 7 is

the ratio of specific heats, z is the axial coordinate, and & is the

mass flow rate.

For the friction solution, a second expression is needed to relate

the change in total pressure (Po) to the change in mass flow rate and to

the friction coefficient. From Shapiro [62]:

dP0  dz d+ (57)
-_ Ff,b4f D1 iF,b
0 '~ h ,

where

Ffb 2 (58)

F f,b= -,yMa 2  (59)

Other useful relations are:

Ta 1 +2if
Ta 1 + 1 kab (60)
Tb 1 + • aa

P b (Po)b T a7/-

(FT) bT 7-1 (61)

Pa PaTb= '-- (52)
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These relate properties between two different axial locations, a

and b, in the vapor flow field.

3.4 Coupling of Vapor Flow With Evaporation and Condensation

To calculate the pressure and temperature variations in the vapor

flow, we need to know the evaporation and condensation rates. However,

these rates depend on the vapor temperature and liquid-vapor interface

temperature distributions. This means that the vapor pressure and

temperature variations are coupled to evaporation and condensation rates

simultaneously. In the present model, the evaporation and condensation

rates are coupled to the vapor temperature and pressure in an explicit

manner so that no iterations are required. However, we still have to

guess the vapor temperature at the evaporator end to calculate the vapor

temperature distribution. The vapor temperature at the evaporator end

can be estimated based on an assumption. Since the vapor density is

very small, we can assume that the heat absorbed by the vapor itself is

negligible compared to the total evaporation and condensation rates. In

other words, at every time step, the total evaporation rate and the

total condensation rate are equal. So, the following equation should be

always satisfied:

iin = Qout (63)

where 4in is the total evaporation rate and out is the total
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condensation rate (see Fig 3.7).

In this research, the one-dimensional vapor flow was coupled with

the local evaporation and condensation rates, as shown in Fig 3.7, using

the following procedure:

(1) The local evaporation rate or condensation rate nv(k) at previous

time step, can be evaluated from previous local temperatures

TnR,j,k and Tv(k).

(2) Guess the new vapor temperature at the evaporator end Tnv+ 1 (1), and

then use the evaporation and condensation rates to predict the
n+1

vapor pressure and temperature variations at new time step (Pv (k)

and T (k))

(3) As TIv+l(k) is obtained, we can calculate the new temperature
V

distribution in the heat pipe wall and wick Tn+1I,j,k"
"n+1

(4) The local evaporation or condensation rate Qv (k) at new time step

can be evaluated from TA+l(k) and n.,+ kSNR,j,k"

(5) The total evaporation rate E and condensation rate o canToutca

be evaluated from n+1 (k).

(6) in - E > f, go back to step (2) and iterate until A

< E

(7) After it converges, Qn+l T+l(k) , Pn+l(k) Tn+v , vat new

time step can finally be obtained.
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3.5 Linid Pressure Drop

In calculating the liquid pressure drop, we assumed that the groove

structures are fully wetted with working fluid and the liquid flow is

always laminar owing to the generally low liquid velocity. The liquid

pressure drop can be obtained by using the following expression [63]:

= -F1Q 
(64)

Here, Q is the local axial heat rate along a groove, and F1 is a

frictional coefficient for the liquid flow and is defined as:

F1 = n-l (65)1=KA 9Ap,

Here, A1 is the liquid viscosity, A is the groove cross-sectional area,

A is the latent heat of evaporation, p1 is the liquid density, and K is

the permeability of the groove structure and is calculated from the

equation:

2 r
S= eh, (66)

where f is the groove porosity, rh ,1 is the hydraulic radius of the

groove structure defined as twice the cross-sectional area divided by

the wetted perimeter, and (f 1 Re,) is a constant for laminar flow whose

magnitude depends only on the geometry of the groove structure and can

be obtained from Ref. 63.
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CHAPTER 4

TRANSIENT BEHAVIOR OF HP/TES SYSTEE

UNDER PULSE BEAT LOADS APPLIED AT THE EVAPORATOR

In this chapter, we will examine two important points. First, how

effectively can a PCX mitigate the adverse effects of pulse heat loads

applied at the evaporator? Second, is there any disadvantage associated

with installing phase-change material (PCI) in the vapor core? Also, if

there are significant difficulties associated with such a system, will

they be offset by the capabilities of the PCI itself?

It is clear that the main disadvantage of installing phase change

material in the vapor core of a heat pipe is the accompanying reduction

in the vapor flow area. This reduction in vapor flow area could cause

vapor pressure drop and vapor velocity to increase, and thus decrease

the heat pipe capability. Fortunately, the PCI itself can absorb a

large portion of the heat loads during the melting process after pulse

heat loads are applied. Some vapor will condense on the surface of PCX

cylinders and reduce the vapor velocity and pressure drop. The net

increase (or decrease) in vapor velocity and pressure drop due to the

installation of PCI is strongly dependent on how efficiently the PCI can

absorb the heat loads.

4.1 Limitations of the Heat PiDe

Circulation of working fluid is an important heat pipe design
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factor. The greatest possible circulation is required to obtain a

maximum heat transport capability from the heat pipe. Limitations on

the heat transport capability include capillary pumping ability

(capillary limit), choking of vapor flow (sonic limit), tearing of

liquid off the liquid-vapor interface by vapor flowing at high velocity

(entrainment limit), and disruption of the liquid flow by nucleate

boiling in the wick (boiling limit).

Figure 4.1 shows how transport capability varies with the operating

temperature for a screen-wrapped grooved heat pipe without anything

installed in the vapor core. These data are based on a total heat pipe

length of 1.0 m with evaporator, condenser and adiabatic sections of

0.3m, 0.3m and 0.4m, respectively. The heat pipe outside diameter is

assumed to be 1.9 cm (3/4 in) with an inside diameter of 1.4 cm. Liquid

sodium is used as the working fluid, and the screen wick has 200 meshes

per inch. As one can see, within the operating temperature range

between 900 and 1300 K, the entrainment limit places the greatest

restrictions on heat transport capability. At 950 K, the entrainment

limit is about 5.4 kV, which is equivalent to a uniform heat flux 30

W/cm2 applied at the evaporator. If an empty cylinder was installed in

the vapor core, the heat pipe capacity would be degraded due to the

reduction in vapor flow area. Fig 4.2 shows the operation limits for

the heat pipe with an empty cylinder with a radius of 0.4 cm mounted in

the vapor core. The entrainment, capillary, and sonic limits are

decreased due to installation of the empty cylinder. At an operating

temperature of 950 K, the entrainment limit is decreased by about 33% to

3.6 kW, which is equivalent to a uniform heat flux 20 W/cm2 applied at

the heat pipe evaporator. Fortunately, filling the cylinder with PCI
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can offset this disadvantage by absorbing a large portion of the heat

loads during the melting process. Such a mechanism will be discussed in

the last section of this chapter.

4.2 Operation Under Normal Conditions

In this section, we will see how the UP/TES system responds under

the pulse heat loads which are less than the heat pipe operation limit.

We have applied the numerical model, introduced in Chapter 3, to a heat

pipe with 18 grooves using sodium as the working fluid. The material

for the heat pipe container is assumed to be type 316 stainless steel.

All axial and radial dimensions of the heat pipe are the same as those

just discussed in connection with Fig 4.1. A uniform heat flux is

applied to the evaporator, and heat is removed at the condenser by

radiative heat transfer to the surroundings which are maintained at 0 K.

The emissivity of the condenser wall surface is assumed equal to unity.

Lithium hydride, which has a latent heat of 2.58*106 J/Kg and a melting

temperature of 956 K, is used as the phase-change material.

For numerical modeling of the heat pipe wall and wicks, 8 and 40

nodes were chosen in radial and axial directions, respectively. Since

the heat pipe could be divided into 18 identical land-and-groove

subunits, only 4 nodes were needed in the angular direction for each

unit once symmetry was invoked. The transient responses of three

different HP/TES configurations were compared: (1) a heat pipe with one

large empty cylinder installed in the vapor core, (2) a heat pipe with

one large PCI cylinder, and (3) a heat pipe with six small PCX
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cylinders. The radius of the single large cylinders is 0.4 cm while

each of the small cylinders has a radius of 0.163 cm. These radii were

chosen so that the large cylinder holds the same amount of PCI as the

six small cylinders combined. The hydraulic diameter for vapor flow is

about 0.82 cm for the heat pipe with a single large cylinder and about

0.75 cm for the one with six small PCI cylinders. For the numerical

modeling of the PCX, 40 nodes in the radial direction were chosen for

the large PCX cylinder and 16 nodes were used with the small one. A

phase transition temperature interval of 2ATM= 10.0 K was assumed and

the time step At= 0.1 s has been used for all the examples in this

report.

Figure 4.3 illustrates the transient response of four different

HP/TES configurations when a higher heat load is suddenly applied to the

evaporator. Before t= 10 s, all four different heat pipes are operating

at steady-state under a uniform evaporator heat load q= 4.3 V/cm2 . The

average heat pipe temperature is about 940 K. After t= 10 s, a higher

heat load of q= 10 W/cm2 is suddenly applied to the evaporator. As

shown in the figure, the temperature of both heat pipes without PCI

increases quite sharply. It should also be noted that the temperature

of the heat pipe without anything installed in the vapor core shows no

difference with that of the one mounted with an empty cylinder through

the whole test period. The temperature of both heat pipes fitted with

PCI also increases rapidly immediately right after the heat load is

applied, but this steep temperature increase is arrested when the PCi

reaches its fusion temperature where melting begins. One should also

note that the temperature increase of the heat pipe with six small PCI

cylinders is much slower than for the one with a single large PCI
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cylinder during the melting process. The smaller PCM cylinders have an

advantage because their total heat transfer surface area is greater and

their heat conduction path is shorter compared to the configuration with

a single large PCI cylinoer. However, the six small PCI cylinders will

be completely melted earlier than a single large PCI cylinder. The six

small PCI cylinders are completely melted at about t= 100 s, and the

larger PCM cylinder does not completely melt until about t= 130 s.

After the PCM has completely melted, the temperature of both heat pipes

with PCI starts to increase rapidly until the heat pipes reach a new

2steady-state condition with q= 10 W/cm . Both heat pipes without PC#

reaches their new steady-state conditions at about t= 350 s. Due to the

additional heat capacity of the phase-change materials, the other two

heat pipes with PCI reach the steady-state condition somewhat later at

about t= 580 s. We also applied a lumped model to predict the heat pipe

transient behavior. As one can see, the results from the lumped model

for the heat pipe without a PCX are in good agreement with those from

the finite-difference method. The heat pipe temperature predicted by

the lumped model averages about 10 K average lower than that obtained

using the finite-difference method. This discrepancy arises because the

heat removed from the condenser by radiation is overestimated by the

lumped model, which uses the average heat pipe temperature as the

condenser wall surface temperature.

An interesting output from the finite-difference solution is the

fraction of the heat conducted through the heat pipe wall at the

evaporator which is absorbed by the PCI during the melting process. In

other words, one would like to know what percentage of the heat

conducted into the vapor core significantly contributes to the vapor
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flow. As shown in Fig 4.4, we define 4in as the total heat rate

transferred through the heat pipe wall at the evaporator and Qas the

total heat rate absorbed by the PCI. Both 6i, and Qtare estimated from

the temperature distributions near the heat pipe inner wall and the

outside surfaces of the PCI cylinders.

Figure 4.5 plots the ratio between 4t and Qin for the same

operating conditions depicted in Fig 4.3. For the heat pipe with a

single large PCI cylinder, this ratio reaches 46% and then declines to

27% before the PCM is fully melted. If the heat pipes is equipped with

six small PCX cylinders, the ratio of Qt to Qin reaches 52% and then

decreases to 40% before the PCI is fully melted. Apparently if the heat

pipe contains a single large PCI cylinder, no mnre than 73% maximum of

the heat conducted through the heat pipe wall cotj- ,i,es to the vapor

flow during the PCI melting process. For the TES configuration using

six small PCI cylinders, the maximum fraction influencing vapor flow is

only bO%. These results imply that the increases in vapor pressure drop

and vapor velocity due to installation of the PCI can be significantly

offset by the capabilities of the PCI itself during the melting process.

Figures 4.6a and 4.6b show the axial variation of vapor pressure

and temperature for four different HP/TES configurations at t= 100 s.

The heat pipes without PCI have vapor temperature of 1082 K, which is

much higher than that of the other two heat pipe designs which

incorporate PCI. The heat pipe with a single large cylinder of

phase-change material has a vapor temperature of 985 K, and distributing

the PCI among six small cylinders lowers the vapor temperature to only
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968 K. The results in Figs 4.6a and 4.6b indicate that the vapor

pressure and temperature drops are strongly dependent on the operating

vapor temperature. A lower vapor temperature will result in a lower

speed of sound in the vapor and a higher Mach number for the flow. From

Eq. (53) in Chapter 3, one can see that higher Mach numbers will lead to

higher friction coefficients, resulting in larger total pressure drops.

Higher Mach numbers also cause the static pressure to drop even more.

In the adiabatic section, much less mass blowing or suction will take

place. Thus, the pressure decreases there are mainly due to friction

and will be smaller than those occurring in the evaporator. As

expected, these pressure and temperature losses are partially recovered

in the condenser section. Fig 4.6a also shows the vapor pressure drop

of the heat pipe without anything installed in the vapor core is smaller

than that of the one mounted with an empty cylinder due to larger vapor

flow area.

In Fig 4.7, the results from Fig 4.3 are compared with those

obtained using a larger time step and wider grid spacings. The time

step was increased from 0.1 second to 0.5 second and the grid spacings

Ar, Art and Az have been doubled. As shown in the figure, the longer

time step and coarser grid mesh have little effect on the solution. For

all practical purposes, the numerical results presented in Fig 4.3 are

essentially independent of the time step and grid spacing.

The transient responses of the heat pipes with a pulse heat load

applied to the evaporator from t= 10 s to t= 100 s are shown in Figs 4.8

and 4.9. As can be observed from Fig 4.8, the heat pipe responds very

quickly, and the temperature starts to decrease as soon as the pulse

heat load is removed at t= 100 s. The temperature of the heat
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pipe without a PCI decreases quite rapidly after the pulse heat load is

removed. The temperature of the other two designs with PCX also

decreases immediately after the pulse heat load is removed, but the

decrease becomes very slow when the PCI reaches its melting point and

starts to solidify. The six small PCI cylinders will become completely

solidified sooner than a single large PCI cylinder. After the PCI

cylinders have completely solidified, the temperature of both heat pipes

incorporating a PCI begins decreasing again and the heat pipes return to

2their initial steady-state condition with q= 4.3 W/cm . For the heat

pipe with six PCI cylinders and the design with one large PCI cylinder

to return to the initial steady-state conditions after the pulse heat

load is removed requires about 1,620 seconds and 1,740 seconds,

respectively. Fig 4.9 shows the percentage of PCI melted versus time

for the same cases covered in Fig 4.9. One can see that the

phase-change material does not respond as fast as the heat pipe

temperature does. In fact, after the pulse heat load is removed at t=

100 s, 2% more of the six small PCX cylinders and 10% more of the single

large PCI cylinder will still be melted by residual heat. It should

also be noted that the small PCI cylinders solidify more quickly than

the larger one can.

Figures 4.10 and 4.11 illustrate the results for the transient

response of the heat pipes with periodic pulse heat loads. The time

period of the pulses is 200 s and each pulse heat load lasts for 20 s.

These periodic pulse heat loads are applied before the heat pipes have

enough time to return to their initial steady-state operating condition.

The temperature response on each cycle is similar to the results shown

in Fig 4.8. On the other hand, temperature of the heat pipe without
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a PCI temperature regulation system goes up and down periodically. The

temperature of the heat pipe with six small PCM cylinders remains almost

constant over several cycles due to very efficient melting and

solidification. It is clear from Fig 4.11 that the percentage of molten

PCI for both heat pipes containing PCI cylinders continues to increase

as the cycles persist. This increase in the melted PCI fraction over

time takes place because the PCI does not have enough time during the

low-power periods to solidify completely before the next pulse cycle

begins.

4.3 Operation Near HP/TES Limitation

As was mentioned earlier, the main drawback to installing PCI in

the vapor core of a heat pipe, neglecting the PCI ability to absorb a

portion of the heat load during melting, is that the heat pipe

capability is degraded due to a reduction in the vapor flow area. From

Fig. 4.2, the heat transport limitation for a heat pipe with a large

empty cylinder at temperature 950 K is equivalent to a uniform heat flux

of 20 W/cm2 applied to the evaporator. In this section, we will examine

the transient response of the HP/TES system under pulse heat loads near

this heat pipe limitation to see if the decrease in heat pipe capability

from the reduction in vapor flow area can be recovered.

Figure 4.12 shows the transient response of three different HP/TES

configurations when a pulse heat load near the heat pipe limitation is

suddenly applied to the evaporator. Before t= 10 s, all three different

heat pipes are operating at steady-state under a uniform
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heat load q= 4.3 W/cm2 in the evaporator. The average heat pipe

temperature is about 940 K. After t= 10 s, a higher heat load of q= 20

W/cm2 will be applied to the evaporator. As shown in the figure, the

trend of the temperature increases for all three heat pipes is similar

to the results seen in Fig 4.3 with lower pulse heat loads. However,

the PCI will be fully melted much earlier under the higher pulse heat

load. The six small PCI cylinders will finish melting at about t= 50 s

while the single larger PCI cylinder does not completely melt until

about t= 70 s.

Figure 4.13 depicts the axial variation of liquid and vapor

pressure for the heat pipe without a PCI at t= 12 s. At this moment,

the heat pipe has the greatest liquid and vapor pressure drops due to

the high liquid and vapor mass flow rates and low heat pipe temperature.

Apparently, the vapor pressure drop dominates the liquid pressure drop

for this type of heat pipe. As one knows, the heat pipe capillary limit

is strongly dependent on the overall liquid and vapor pressure drops.

Thus, for this type of heat pipe, the effect of the liquid pressure drop

on the heat pipe capillary limit can be neglected.

The total heat rates transferred through the heat pipe wall at the

evaporator for three different heat pipes are plotted in Fig 4.14. The

total pulse heat load applied at evaporator is 4e= 3.64 kW (which is

equivalent to a uniform heat flux q= 20 W/cm 2) after t= 10 s. For the

heat pipe without a PCI, only Qin= 2.8 kW is transferred through the

heat pipe wall into the vapor core at t= 20 s. This reduction in the

heat transfer rate arises because a large portion of the heat load is

absorbed by the heat pipe wall due to the rapid temperature increases
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taking place at this moment. The Qin value rises gradually once the

heat pipe temperature increase slows down, and finally approaches Qe

upon reaching another steady-state. On the other hand, for both heat

pipes with PCI most of the heat loads are transferred through the heat

pipe wall into the vapor core at t= 20 s. Heat transfer to the vapor

core is more efficient for the PCI designs because the heat pipe

temperature increases are being slowed by the PCI melting process. The

4in value for both heat pipes with PCI remains almost constant

throughout the melting process. It then drops suddenly as soon as the

PCI is completely melted, and the heat pipe temperature starts to

increase rapidly.

Figure 4.15 shows the ratio Qt/4in for both heat pipes equipped

with PCI and operating under pulse heat loads near the heat pipe

limitation. It is quite apparent that the PCI responds very quickly to

pulse loading. The PCI starts to melt and absorbs a large portion of

the heat immediately after the pulse heat loads are applied. For the

heat pipe with one large PCI cylinder, this ratio reaches a maximum of

587 and then decreases to 387 before the PCI is completely melted. For

the one with six small PCI cylinders, the ratio 4t/Qin peaks at 717 and

then declines to 53% when the PCI is totally melted. In effect, the

heat pipe with one large PCI cylinder has at most 627 of the heat which

is conducted through the heat pipe wall contributing to the vapor flow

during the PCI melting process. In the design with six small PCI

cylinders, the maximum fraction adding to the vapor flow is only 47%.

As we mentioned earlier, the decrease in the vapor flow area due to the
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installation of PCI causes the heat pipe capability to decrease by about

33%. From the results shown in Fig 4.15, it is clear that this decrease

in heat pipe capability can be completely offset by the capabilities of

the PCI itself during the melting process.

Comparing the results between Fig 4.5 and Fig 4.15, one finds that

the ratio 4t/Qin is larger with higher pulse heat loads during the PCI

melting process. Since the heat pipe temperature remains about the same

during the PCM melting process for both pulse heat loads, the heat

removed from the condenser by radiation will also be similar. Thus, the

percentage of the heat loads directly contributing to the vapor flow

during the PCM melting process wili be lower under higher pulse heat

loads. We can, therefore, predict that the HP/TES system can operate

without burnout under uniform heat fluxes even greater than q= 30 V/cm2

the heat pipe limitation present without anything installed in the vapor

core. Not only can the PCI recover the decrease in heat pipe

performance due to the reduction in vapor flow area, but it can actually

increase heat pipe transport capability.

In the design of a HP/TES system, one should choose a PCI with a

melting point slightly higher than the normal operating temperature.

Then if a pulse heat load higher than the heat pipe limitation is

applied, the PCI can respond fast enough to begin melting and absorb

some of the heat before the heat pipe reaches its operating limit and

burns out. To reduce the chance of completely melting during the pulse

period, the latent heat of fusion of the chosen PCI should also be as

large as possible.

The concept of incorporating phase-change material inside a
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low-temperature heat pipe (such as a water heat pipe) is also sound if

the goal is to limit the temperature extremes encountered when the heat

load is time-dependent. For most low temperature heat pipes, the vapor

pressure drop is small, and vapor flow usually does not play an

important role in determining the heat pipe capability. Thus the

increases in the vapor pressure drop and vapor velocity caused by the

reduction in flow area would not have a significant effect on heat pipe

capability.
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TRANSIENT BEHAVIOR OF HP/TES SYSTEE

UNDER REYERSED-PULSE HEAT LOADS APPLIED AT THE CONDENSER

The transient behavior of a high-temperature axially grooved heat

pipe (HP) which incorporates thermal energy storage (TES), under

reversed-pulse heat loads applied at the condenser is presented in this

chapter. Liquid sodium, which is used to remove the heat released by a

power generator, circulates through a HP/TES cooling device from which

the heat is rejected into space. The transient response of three

different HP/TES configurations under reversed-pulse heat loads are

compared: (1) a heat pipe with a large empty cylinder installed in the

vapor core, (2) a heat pipe with a single large PCI cylinder, and (3) a

heat pipe with six small PCI cylinders. The results for a heat pipe

with and without an adiabatic section will be presented, respectively.

5.1 Description of The Problem

Future space missions will involve thermal transport devices with

the ability to handle reversed-pulse heat loads. Figure 5.1 shows a

schematic diagram of the cooling system for a power generator. A

certain amount of heat is continuously being released by the power

generator and removed by the liquid sodium loop. The sodium loop

circulates through the HP/TES cooling device, where the heat is rejected

into space. Under normal conditions, the system is operating at steady-
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state. Suddenly, an a, ident laser strikes the condenser section of the

HP/TES cooling device. Under such severe operating conditions, the heat

released by the power generator can no longer be removed by the UP/TES

cooling device, and the reversed-pulse heat load caused by the incident

laser will be reversely transferred back into the liquid sodium loop.

Incorporation of thermal energy storage (TES) into heat pipe rejection

systems can be a promising method to mitigate damage from reversed-pulse

heat loads. The transient response of different heat pipes (with or

without phase-change material) urpuer reversed-pulse heat loads will be

studied in this chapter.

5.2 Analytical Model

The numerical model used in this chanter to predict the transient

response of the HP/TES cooling 3ystem has already been described in

Chapters 3 and 4. In the numerical soluti•,, the heat pipe evaporator

wall surface temperature was assumed equal to the sodium loop

temperature because the surface heat transfer coefficient is very high.

The liquid sodium loop temperature can be predicted by the followirg

equation:

C AT loop = Q- Qe (67)loop _Ft g e

Since this study focused only on a heat pipe unit, it should be

noticed that Cloop and Qg in Eq. (67) are the total sodiunm loop heat
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capacitance and the heat rate released from the power generator,

respectively, divided by the total number of heat pipes in the system.

The heat rate released from the power generator Q is always positive

and remains constant. Qe is defined as the hudt rate transferred from

the sodium loop to the heat pipe, and is evaluated from the temperature

gradient ir. the heat pipe wall. It can become negative when a reversed

heat 1oLd is applied. If liquid sodium with velocity 1 m/s is

circulating through the heat pipe, a very high surface heat transfer

coefficient (about 5*104 W/m2 K) can be obtained. Since the heat

transfer coefficient is so high, we will assume that the heat pipe

evaporator wall surface temperature is equal to the sodium loop

temperature.

We also applied a simple lumped-heat-capacity model to predict the

transient behavior of the heat pipe without a PCI. The average heat

pipe temperature was predicted by the following equation:

AThD

Chp At =e- Qc (68)

where Q e= hAe(Tloop- Thp)

ic= Ac(LTThp - qrev)

Eq.(68) is coupled with Eq.(67) to calculate the sodium loop and

heat pipe temperatures. For the lumped-heat-capacity model, an average

surface heat transfer coefficient between the liquid sodium loop and the

heat pipe evaporator of h = 5*104 w/m2 K was assumed. The heat
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capacitance of the heat pipe Chp is about 540 J/K.

5.3 Results for Heat Pipes With Adiabatic Section

We applied the numerical model to a grooved heat pipe for which the

specifications were given in Chapter 4. The total length of the heat

pipe was 1.0 m with an adiabatic section having length of 0.4 m. Under

normal condition, heat was transferred from the sodium loop to the heat

pipe evaporator section by forced convection and was removed at the

condenser by radiation.

Figure 5.2 shows the transient response of three HP/TES

configurations with Cloop = 1000 J/K when a reversed heat load is

suddenly applied at the condenser. Prior to t= 10 s, the three heat

pipes all are operating at steady-state conditions with the temperature

of the sodium loop maintained at 950 K. Under this steady-state

condition, the total heat rate transferred from the sodium loop, Qe' is

about 0.78 kW (for an average surface heat flux of about 4.3 W/cm 2) and

is equal to the total heat rate removed at the condenser by radiation

heat transfer, ic* The average heat pipe temperature is about 945 K. A

heat transfer rate of 0.78 kW is continuously released from the power

generator to the sodium loop throughout the entire operating period.

After t= 10 s, a reversed heat load of qrev= 10 W/cm2 is suddenly

applied to the condenser. As one can see, the temperature of the heat

pipe without PCI increases rapidly. On the other hand, the temperatures

of the other two heat pipes with PCI also increase rapidly immediately
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after the reversed heat load is applied. But the rapid temperature

increase is arrested after the PCM reaches its melting temperature and

starts to melt. It can also be seen that the temperature increase

during the melting process with six small PCI cylinders is slower than

with one large PCM cylinder. This slower temperature rise occurs

because the total surface area of the six small PCI cylinders available

for heat transfer is larger and the heat conduction path is shorter

compared to the case with one large PCI cylinder. However, the six

small PCM cylinders will be completely melted earlier, at about t= 80 s,

compared to t= 110 s for the one large PCM cylinder. After the PCM is

completely melted, both PCM equipped heat pipes undergo rapid

temperature increases until they reach a new steady-state condition.

Due to the complexity of the present heat pipe problem, we are not

able to predict the error of the numerical solutions accurately because

no analytical solution is available. However, in order to retain high

accuracy, the time step and grid spacings used in this research were

chosen to satisfy the stability and accuracy conditions in Ref. [18].

Under these conditions, the error of the present numerical solutions

should be only a few percent. To further validate the numerical

solutions, we applied the numerical model to the same problem depicted

in Fig 5.2 by using a smaller time step At= 0.025 s and reducing the

grid spacings in the r and z directions by half for both the heat pipe

and PCI. As we can see from Fig 5.2, the solutions remain almost the

same with smaller values of the time step and grid spacings.

Figure 5.3 shows the variations of heat input, ie' and heat output,

for three different HP/TES configurations with Cloop= 1000
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J/K under a reversed heat load applied at the condenser. The total heat

rate transferred from the sodium loop to the heat pipe evaporator, Qe'

can be determined by knowing the temperature gradient inside the wall

along the evaporator. The total heat rate removed from the condenser,

4c, is the summation of the heat removed by radiation and the reversed

heat load. Prior to t= 10 s, all three heat pipes are operating at

steady-state with a heat input of 4e= 0.78 kV equal to the heat output

of ic= 0.78 kM. After a reversed heat load qrev= 10 V/cm2 is applied at

t= 10 s, the heat outputs at the condensers of the three heat pipes all

become negative, indicating that there are external heat loads being

added at the condensers. However, these heat outputs all begin to

increase due to greater heat removal by radiation at the higher

condenser wall temperatures. The variation of heat output is similar to

that of the heat pipe temperature because the heat output depends

strongly on the condenser wall surface temperature.

The heat input variation is a strong function of the sodium loop

heat capacitance Cloop. After the reversed heat load is applied, the

heat input of the heat pipe without PCI decreases very rapidly in the

first 10 seconds and is reversed to negative. After t= 20 s, the heat

input begins to increase because the heat output increases, and the

reversed heat flow effect becomes less and less. The heat inputs of the

other two heat pipes fitted with PCI also decrease rapidly immediately

after the reversed heat loads are applied. After the PCI starts to melt

at about t= 15 s, the heat inputs increase very rapidly. This is

because most of the reversed heat load is absorbed by the PCI so that

the heat pipe temperature increase becomes very slow. However, the heat
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inputs decrease slightly during later stages of the melting process

because the PCI capability to absorb the reversed heat load is

declining. The heat inputs for the two heat pipes equipped with PCI

drop again and reverse to negative after the PCI is completely melted

because the heat pipe temperature starts to increase rapidly. It can

also be seen that the heat input of the heat pipe with six small PCI

cylinders is higher than that of the one with a single large PCI

cylinder during the melting process. The greater heat input occurs

because the temperature of the heat pipe with six small PCM cylinders is

lower. The three different HP/TES configurations all tend to reach a

new steady-state temperature with same original heat input and heat

output equal to 0.78 kW.

Figure 5.4 shows the transient response of three different HP/TES

configurations with Cloop= 10000 J/K under a reversed heat load suddenly

applied at the condenser. Before t= 10 s, all three heat pipes are

operating at steady-state conditions as we mentioned in the earlier

2.case. After t= 10 s, a reversed heat load of qrev= 10 V/cm is applied

at the condenser. As can be seen from the figure, the temperature

increase of all three HP/TES configurations is very slow. Because of

its high heat capacitance, the sodium loop acts like a huge heat sink

which can absorb most of the reversed heat loads and arrest the heat

pipe temperature increase. It is clear that with such a high sodium

loop heat capacitance, installation of PCI to mitigate the reversed heat

loads is unnecessary.

Figure 5.5 shows the variations of heat input and heat output of

three different HP/TES configurations with Cloop= 10000 J/K under a

reversed heat load applied at the condenser. Compared with the results
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shown in Fig 5.3 for the case with Cloop= 1000 J/K, the heat inputs of

all three heat pipes decrease very rapidly and all are reversed to

negative after the reversed heat load is applied. With such a high

sodium loop heat capacitance, the sodium loop itself behaves like a

massive heat sink and can absorb the reversed heat loads easily. The

heat inputs of the two heat pipes with PCI are reversed less than the

one without PCI after the condenser heat loads are applied. However,

they immediately drop again after the PCI is completely melted.

Figure 5.6 presents the transient response of the heat pipe without

PCI under reversed heat loads as predicted by the lumped-heat-capacity

model. It can be seen that the results from the lumped model have very

good agreement with those from the finite-difference method. The lumped

model can predict the average heat pipe temperature and the heat flow

input/output at the evaporator and condenser very well for the heat pipe

without PCI. The heat pipe temperature predicted by the lumped model is

about 10 K lower than that obtained from the finite-difference method

throughout the time period of interest. This discrepancy arises because

the heat removed from the condenser by radiation is overestimated by

using the average heat pipe temperature as the condenser wall surface

temperature.

Figure 5.7 shows the axial variation of vapor mass flow rate for

two different HP/TES configurations with Cloop= 1000 J/K. At t= 10 s,

both heat pipes are operating at steady-state conditions with forward

heat loads applied at the evaporators. All the vapor mass flow rates

are positive along the two units. The vapor mass flow rates increase in

the evaporator section, remain almost constant in the adiabatic section,

and then decrease in the condenser section. As can be seen from Fig

105



(an~q) IndIno 'bIndulI sH

0 0o 0 V NY 0 o v' co o 0

........ 6.6

05 
1

I CIO

00

oLC~

0.0~0 0(,N

440

C.-) 0.

10 0 1

to.
0 0 0 0 0 0 0 0L0;

w4 0l a' 0to ~0 C

()I) ajniuwadwsjL dH 999UISAV

106



E

A0 0

o - 0
II 0

-U w

> 0

0 0 0
3: -

03
0 oP - 0

cqI
U) U) 0-0

107



5.5, the vapor flow of the heat pipe without a PCI is totally reversed

at t= 60 s since both heat input and heat output are negative. For the

heat pipe with six small PCI cylinders, the vapor flow becomes two

separate flows with opposite directions because the heat input is

positive while the heat output will be negative. Evaporation occurs at

both evaporator and condenser sections, while the vapor condenses in the

adiabatic section and on the outside surfaces of the PCi containers. As

shown in Fig 5.7, the vapor mass flow rate is positive only in the

evaporator section and part of the adiabatic section. It is negative

over the remainder of the heat pipe. One should also note that the

vapor mass flow rate at the adiabatic section of the heat pipe with six

small PCI cylinders changes more rapidly than it does when no PCI is

present. This difference occurs because a considerable amount of vapor

condenses on the outside surfaces of the PCI containers during the

melting process.

Figures 5.8a,b show the axial variation of vapor pressure and

temperature for two different HP/TES configurations with Cloop= 1000

J/K. At t= 10 s, both heat pipes are operating at steady-state

conditions. The variation of the vapor pressure for both heat pipes is

almost identical since there is little difference between the heat pipe

temperatures and vapor mass flow rates. At t= 60 s, both heat pipes

have a higher vapor pressure at the condenser end because the vapor

flows are reversed. The vapor pressure drop along each heat pipe at t=

60 s is much less than at t= 10 s. For the heat pipe without a PCI, the

smaller pressure drop is mainly due to its higher temperature, which

strongly influences vapor pressure variation as discussed in Chapter 4.

For the heat pipe with six small PCI cylinders, the lower pressure drop
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is a result of higher heat pipe operating temperature, smaller vapor

mass flow rate and the shorter vapor flow path resulting from the two

separate vapor flows. One should also note that the axial variation of

vapor temperature is very similar to that of vapor pressure.

The transient responses of the heat pipes under a reversed-pulse

heat load applied to the condenser from t= 20 s to t= 80 s are shown in

Figs 5.9 and 5.10. As is apparent from Fig 5.9, the temperature of all

three heat pipes responds very rapidly and starts to decrease as soon as

the reversed-pulse heat load is removed at t= 80 s. The temperature of

the heat pipe without PCX decreases very rapidly after the

reversed-pulse heat load is removed. The temperature of each unit with

PCI also decreases rapidly immediately after this time, but the decrease

becomes very slow when the PCI reaches the melting point and starts to

solidify. The six small PCI cylinders will completely solidify earlier

than a single large PCI cylinder. After the PCI has completely

solidified, the temperature of both heat pipes with PCI resumes its

decrease, and the heat pipes gradually return to their initial

steady-state operating conditions. Approximately 1,660 seconds are

required for the heat pipe with six small PCI cylinders to return to the

initial steady-state condition after the reversed-pulse heat load is

removed, while the configuration with a single large cylinder needs

2,260 seconds. Fig 5.10 shows the percentage of PCI melted versus time

for the same case depicted in Fig 5.9. One can readily see that the PCI

does not respond as rapidly as the heat pipe temperature does. In fact,

after the reversed-pulse heat load is removed at t= 80 s, 14% more of

the six small PCI cylinders and 257 more of the one large PCI cylinder

will still be melted before the phase change ceases. It is also clear
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that the small PCI cylinders solidify faster than the larger one does.

Figures 5.11 and 5.12 illustrate the results for the transient

response of the heat pipes with periodic, reversed-pulse heat loads.

The time period is 2000 s and each of the reversed-pulse heat loads

lasts 60 s. The temperature response in each time period is similar to

the results shown in Fig 5.9. The temperature of the heat pipe without

a PCI simply oscillates up and down periodically. The temperature of

the heat pipe with six small PCI cylinders remains almost constant

throughout the whole period due to the very efficient melting and

solidification of this PCI configuration. As shown in Fig 5.12, the

molten fraction of the PCI for the heat pipe with six small PCI

cylinders does not differ from one cycle to the next. This is because

the six small PCI cylinders solidify completely at the end of each

cycle. The percentage of PCI melted for the heat pipe with one large

PCI cylinder continues to increase as the pulse cycles continue. This

occurs because the one large PCI cylinder does not have sufficient time

to solidify completely at the end of each time period for this cyclic

rate.

Figures 5.13 and 5.14 present the results for the heat pipes under

periodic, reversed-pulse heat loads with a shorter time period of 600 s.

Each of the reversed-pulse heat loads also lasts 60 s. It is clear from

these figures that the temperature of both heat pipes with PCI is under

control during the first cycle. However, the temperatures become very

high during the next two cycles. This failure of the PCI temperature

regulation mechanism occurs because the time period is too short for the

PCI to solidify completely at the end of each cycle. At the end of the

first cycle, only about 50% of the PCI is solidified for

114



-0
E coCMJ

E E

> > 0
U. %- - v0

* 00

0+

CIS 0 0 a1

()I ailvouD HDtIA

o 015



Go -Y

a 0 =
-0 1Y o

E EC~

U~ 00

V w

-U - a.)
00- CLon

>I 0
0 - O0 0

... 0 0 a

WW Wa.c)o V yb

(S) 0QIt U.d-0UTI~

116.



co

((A

E 00
00 CpJ CY 4

aj cyJ'

E- E

CO CO U N

0*

0WW .0

Of 0

orooo .- I
(N) anlwadGJ, H 01910,.

117



0

E Got
V V

(0 --

zV V

00 N0
> > 0

cr: cJ a,.

aN > 00

ZZ~ 00

WUCL P-4O

00

. . . . . . ..0
C b

to h. v mf *C..

LV .04 ra

PGIIO-u M~ JO UIIJ4



either heat pipe. After the second reversed-pulse heat load is applied,

the PCX soon becomes completely melted, and the heat pipe temperature

increases rapidly. The PCI will never again have time to solidify and

thus becomes useless for thermal regulation purposes after the second

cycle. Obviously, cycle time is a vital consideration in the design of

a UP/TES cooling system to handle periodic, reversed-pulse heat loads.

5.4 Results for Heat Pipes Without Adiabatic Section

In this section, the numerical model will be applied to a grooved

heat pipe without an adiabatic section under partially reversed heat

loads applied at the condenser. The specifications of the heat pipe are

the same as those given in Chapter 4, except there is no adiabatic

section. The total length of the heat pipe is 1.0 m with the evaporator

and condenser sections having lengths of 0.3 m and 0.7 m, respectively.

The numerical model predicted the transient response of the UP/TES

cooling system under a variety of partially reversed heat loads as shown

in Fig 5.15.

Figure 5.16 shows the transient response of three HP/TES

configurations with Cloop = 1000 J/K when a reversed heat load is

suddenly applied to 75% of the condenser surface. Prior to t= 10 s, the

three heat pipes all are operating at steady-state conditions with the

temperature of the sodium loop maintained at 950 K. Under this

steady-state condition, the total heat rate transferred from the sodium

loop, Qe' is about 1.78 kW (for an average surface heat flux of about
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Figure 5.15 A heat pipe without an adiabatic section operates under a
partially reversed heat load
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9.8 W/cm2) and is equal to the total heat rate removed at the condenser

by radiation heat transfer ic" The average heat pipe temperature is

about 938 K. A heat transfer rate of 1.78 kW is continuously released

from the power generator to the sodium loop throughout the entire

operating period. After t= 10 s, a reversed heat load of qrev= 20

V/cm2 is suddenly applied to 75% of the condenser surface. Compared

with the results shown in Fig 5.2, the PCI is completely melted earlier

due to the higher heat loads applied at the evaporator and condenser.

The six small PCI cylinders will be completely melted at about t= 40 s

and the single large PCI cylinder at t= 60 s. As one can see from the

figure, the temperature of both heat pipes fitted with PCI also

increases very swiftly during the PCI melting process. This rapid

temperature rise happens because that the radial temperature gradient

inside the PCI is very large under such high heat loads. The surface

temperature of a single large PCI cylinder is about 90 K higher than the

PCI melting point at t= 50 s. In designing an HP/TES cooling system to

handle such high total reversed heat loads, one must install more PCI

cylinders in a heat pipe with a larger vapor flow area. Thus the heat

load to each PCI cylinder can be reduced, the radial temperature

gradient inside the PCI can be decreased, and the PCI melting process

will last longer. The variations of the heat input, 4e' and heat

output, Qc, as shown in Fig 5.17 are similar to the results already

given in Fig 5.3.

Figures 5.18 and 5.19 present the transient response of three

HP/TES configurations with Cloop = 1000 J/K when a reversed heat load is

suddenly applied to 507 of the condenser surface. The six small PCI
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cylinders and the one larger PCI cylinder will be completely melted at

t= 50 s and 80 s, respectively. Although both the fraction of the

condenser surface directly exposed to the reversed heat loads and the

total load itself are reduced from the previous case, the temperature of

both heat pipes still increases rapidly during the PCI melting process.

The surface temperature of the single large PCI cylinder is about 80 K

higher than the PCI melting point at t= 70 s.

Figures 5.20 and 5.21 show the transient response of three HP/TES

configurations with C loop = 1000 J/K when a reversed heat load is

suddenly applied to 25% of the condenser surface. The six small PCI

cylinders and the single large PCI cylinder will now be completely

melted at t= 80 s and 120 s, respectively. As one can see, the

temperature of the heat pipe with six small PCX cylinders only increases

about 10 K during the PCI melting process. The surface temperature of

the single large PCI cylinder is about 40 K higher than the PCI melting

point at t= 110 s; however, the surface temperature excess is only about

12 K for the small PCI cylinders at t= 70 s.

Figure 5.22 shows the axial variation of vapor mass flow rate for

the same case as shown in Fig 21. At t= 10 s, both heat pipes are

operating at steady-state conditions with forward heat loads applied at

the evaporators. All the vapor mass flow rates are positive along the

two units. The vapor mass flow rate increases at the evaporator section

and then decreases at the condenser section. At t= 60 s, each vapor

flow in both heat pipes becomes two separate flows moving in opposite

directions. Evaporation occurs at both the evaporator and the portion

of the condenser section where the reversed heat load is applied, while

the vapor condenses in the remaining portion of the condenser section
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and on the outside surfaces of the PCN containers.

The transient responses of the heat pipes under a reversed-pulse

heat load applied to 25% of the condenser surface from t= 20 s to t= 80

s are shown in Figs 5.23 and 5.24. The trends depicted by the transient

responses are similar to the results shown in Figs 5.9 and 5.10.

However, compared to the results in Figs 5.9 and 5.10, the PCX cylinders

are completely solidified much more quickly after the reversed-pulse

heat loads are removed. Only about 1,000 seconds are required for the

heat pipe with six PCI cylinders to return to its initial steady-state

condition after the reversed-pulse heat load is removed, and the

configuration with one large cylinder can accomplish this in about 1,270

seconds. This shorter adjustment time can be achieved because the heat

will be removed more quickly from a heat pipe with a larger condenser

area.
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CPTEI 6

CONCLUSIONS

In this research, the transient behavior of a high-temperature

grooved heat pipe with thermal energy storage (TES) under pulse heat

loads was modeled using a three-dimensional ADI finite-difference

method. A phase-change material (PCI) encapsulated in cylindrical

containers was used as the TES. Two different types of pulse heat loads

applied to the heat pipe were studied. One was high-pulse heat loads

applied at the heat pipe evaporator. The other one was reversed-pulse

heat loads applied at the condenser. It was found that the PCI is very

effective in mitigating the adverse effects of both types of pulse heat

loads. The six small PCI cylinders are more efficient than the single

large PCI cylinder in reducing the rapid increase in heat pipe

temperature under pulse heat loads, and they can also handle periodic,

pulse heat loads better since they solidify faster.

Since the heat pipe capillary limit is dependent on the overall

liquid and vapor pressure drops and the vapor pressure drop dominates

the liquid pressure drop for this type of heat pipe, the effect of the

liquid pressure drop on the heat pipe capillary limit can be neglected.

The vapor pressure and temperature drops of the heat pipe were found to

be strongly dependent on the operating vapor temperature. The vapor

flow can be reversed or become two opposing flows under reversed heat

loads. The numerical results also indicated that the heat inputs and

outputs of the heat pipes in the cooling system under reversed-pulse

heat loads are strongly dependent on the sodium loop heat capacitance.

The main disadvantage of installing phase-change material in the
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vapor core of a heat pipe is the accompanying reduction in the vapor

flow area. This reduction in vapor flow area could cause the vapor

pressure drop and vapor velocity to increase significantly, and thus

decrease the heat pipe capability. Fortunately, the PCI itself can

absorb a large portion of the heat loads during the melting process

after pulse heat loads are applied. Some vapor will condense on the

surface of PCX cylinders and reduce the vapor velocity and pressure

drop. From the numerical results, one can find that not only can the

PCX compensate for the decrease in heat pipe transport capability due to

the reduction in vapor flow area, it can also actually handle the pulse

heat loads very effectively.

In the design of an HP/TES system, one should choose a PCI with a

melting point slightly higher than the normal operating temperature.

Then if a pulse heat load higher than the heat pipe transport limitatiop

is applied, the PCX can respond fast enough to begin melting and absorb

some of the heat before the heat pLpe reaches its operating limit and

burns out. To reduce the chance of complete melting during the pulse

period, the latent heat of fusion of the PCI should be as large as

possible. Also, the cycle time is a vital consideration in the design

of an HP/TES cooling system to handle periodic, pulse heat loads.

The concept of incorporating phase-change material inside a

low-temperature heat pipe (such as a water heat pipe) is also sound if

the goal is to limit the temperature extremes encountered when the heat

load is time dependent. For most low-temperature heat pipes, the vapor

pressure drop is small, and vapor flow usually does not play an

important role in determining the heat pipe transport capability. Thus

the increase in the vapor pressure drop and vapor velocity caused by the
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reduction in flow area would not have a significant effect on heat pipe

capability.

An improved three-dimensional ADI finite-difference method used to

model the heat conduction through the heat pipe wall and wick was

developed in this research. An important characteristic of this new ADI

method is that the resulting finite-difference equations are consistent

with physical considerations. Compared to the conventional ADI method,

this modification allows the time step to be increased by about 2 orders

of magnitude without compromising significantly on the accuracy of the

numerical solution. Compared with the well-known Brian and Douglas ADI

methods, this new ADI method yields higher accuracy and requires less

computer storage.

The equivalent heat capacity method proposed by Hsiao for the

Stefan problem was tested in this research, but a large energy balance

error was found. Similar conclusion was also given by Phaa. Comparing

with exact solutions, Pham pointed out that the Hsiao method yields

results with up to 22. error. The low accuracy of the Hsiao's method

could be due to its ambiguous theoretical basis. Pham suggested a

simple and accurate method which includes the good features of the

enthalpy and heat capacity methods. One of the good features in the

Pham method is that it estimates the new temperature from the estimated

enthalpy change to 4void the problem of jumping the latent heat peak.

However, the Pham method has a singularity problem.

In this report, we adopted the best features of the Pham method for

the Stefan problem and made some modifications to improve on its weak

points. This modified Pham method was used in conjunction with a

two-dimensional ADI scheme. Compared with analytical solutions, the

135



present method for melting and solidification was found to have very

good accuracy without the singularity problem of the Pham method.

Liquid dynamics in a heat pipe become very significant when dryout

and rewetting occur in the heat pipe wick. However, dryout depends on

the heated zone and the instantaneous local saturation. Thus, if dryout

is to be accurately predicted, the temporal dependence of the saturation

distribution must be taken account. A complete capillary liquid flow

model is needed to predict the dryout and rewetting behaviors of a heat

pipe. A good capillary liquid flow model should include the effect of

vapor pressure changes on the liquid meniscus contact angle and also be

able to predict the saturation distribution.

It was found that the lumped-heat-capacity model can predict the

average heat pipe temperature and the heat flow input/output at the

evaporator and condenser very well for the heat pipe without PCI. We

have also checked the total energy balance and found the error is less

than 17% at each time step. To further validate the numerical solutions,

we applied the numerical model to some problems by using different time

steps and grid spacings. The results reported here were obtained with a

sufficiently fine grid spacing and time step so that numerical results

are essentially independent of the time step and grid spacing.
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Listing of The Computer Program
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C 3-D COMPUTER PROGRAM FOR TRANSIENT BEHAVIOR OF AXIALLY GROOVED HEAT
C PIPE UNDER PULSE HEAT LOADS
C
C
C CKL -THERMAL CONDUCTIVITY OF LIQUID (W/M-K)
C CKLHL -THERMAL CONDUCTIVITY OF LIQUID LIH (W/M-K)
C CKLHS -THERMAL CONDUCTIVITY OF SOLID LIH (W/M-K)
C CKSS -THERMAL CONDUCTIVITY OF SOLID 'W/M-K)
C CKP -NODAL THERMAL CONDUCTIVITY (W/M-K'
C CL -LIQUID HEAT CAPACITY (J/K-KG)
C CLHL -HEAT CAPACITY OF LIQUID LIH (J/K-KG)
C CLHS -HEAT CAPACITY OF SOLID LIH (J/K-KG)
C CP -NODAL HEAT CAPACITY (J/K-KG)
C CS -SOLID HEAT CAPACITY (J/K-KG)
C DENL -DENSITY OF LIQUID (KG/M3)
C DENLHL -DENSITY OF LIQUID LIH (KG/M3)
C DENLHS -DENSITY OF SOLID LIH (KG/M3)
C DENP -NODAL DENSITY (KG/M3)
C DENS -DENSITY OF SOLID (KG/M3)
C DQVDA(K) -LOCAL INWARD HEAT FLUX ON THE VAPOR INTERFACE (W/M2)
C DRS -SPACE INCREMENT IN RADIAL DIRECTION IN SOLID (M
C DRW -SPACE INCREMENT IN RADIAL DIRECTION IN WICK (M)
C DT -TIME STEP (SEC)
C DTHETA -ANGULAR INCREMENT (RADIANS)
C DTV1 -HALF TEMPERATURE INTERVAL OF VAPOR FOR SEARCHING TV(1) (K)
C DZ -SPACE INCREMENT IN AXIAL DIRECTION (M)
C EMISS -EMISSIVITY
C HFUSLH -FUSION HEAT OF LIH (J/KG)
C HTCAMB -AMBIENT HEAT TRANSFER COEFFICIENT FOR THE CONr.ZNSER (W/M2K)
"C NG -NUMBER OF GROOVES
C PV(K) -VAPOR THERMDYNAMIC PRESSURE (N/M2)
C QEVAP -HEAT FLUX ON THE WALL OF THE EVAPORATOR (W/M2)
C QVIN -NODAL HEAT TRANSFER FROM HEAT PIPE WALL TO VAPOR FLOW (W)
C QV(K) -LOCAL HEAT TRANSFER FROM HEAT PIPE WALL TO VAPOR FLOW (W)
C R -NODAL RADIUS (M)
C RI -INSIDE RADIUS OF HEAT PIPE WALL (M)
C RMENIS -MENISCUS RADIUS (M)
C RO -OUTSIDE RADIUS OF HEAT PIPE WALL(M)
C RW -VAPOR CORE RADIUS (M)
C SIGMA -STEFAN-BOLTZMAN CONSTANT (W/M2K4)
C SUMOVI -TOTAL EVAPORATION RATE (W)
C SUMQVO -TOTAL CONDENSATION RATE (W)
C TAMB -AMBIENT TEMPERATURE TO THE CONDENSER (K)
C TMELLH -MELT TEMPERATURE OF LIH (K)
C T(I,J,K) -NODAL TEMPERATURE (K)
C TV(K) -VAPOR TEMPERATURE (-,)
C XL -HEAT PIPE LENGTH (M)
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

REAL *8 TVOLD(100),TV(100),TE(40,100),TTE(40,100),DTV(100)
REAL *8 T(8,5,100),TW(5,100),TT(8,5,100),TOLD(8,5,100)
REAL *8 TVO(U3I),TVNEW(100),DPV(l00j,DPL(100)
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DIMENSION P(100) ,Q(100) ,CKNR(5, 100)
DIMENSION QWALL(5,100),DQVDAN(100),DQDATN(100)
DIMENSION THPAVG(20000) ,TVAVG(20000) ,CTIME(20000)
DIMENSION QVO (100) ,QVNEW(100),QVOLD(iOO)

C
C

COMMON /HPIPE/ TV,DQDATE(100),ZL,DZ,NZ,NDT,QVTES(100),
$NTESTU,TIME,KBURN,NWRITE,XWRITE,NGROV,RW,NADIA,PV(iOO)
COMMON /VCORE/ DQVDA(100),DQDABAR(100),IPCM,PVTTL(100)

$ ,TVREAL(100) ,PLM,DTES,DVAPOR,DWICK,DHYDRO,XMMAX,KPLM
$ ,NEVAP,XTI,DENV(100)
COMMON /PCM/ TVOLD,TE,TTE,DTV,DT,NADI,NRTES,DTHETA,RTES,

$ TSTART, NTHETA, QPCM, QMELT, QPCMTTL
COMMON /LIQ/ QV(100),PL(100),SUMQVI,KPVMIN,PCMAX,DPVPLMAX,

$ CL, NZP1,WIDBAR, DEPTHG, DENL, VISLIQ, TENLIQ, LAMBDA

C CHOOSE RUNNING CASE: IPCM-i (WITHOUT PCM); IPCM-2 (WITH PCM)
C METHOD-i (EXPLICIT); METHOD-2 (IMPLICIT)

I2CM-i
METHOD-i

FRELAXO0.02

IF(METHOD.EQ.1) FRELAX-0.0

C CHOOSE TIME STEP (SEC)

DT-0.i
NDTEND- 6000

C SPECIFY THERMAL ENERAGY STORAGE

NTESTU- 0
RTES0. 004
NRTES- 40

cc NTESTU- 6
cc RTES-0.001633001

cc NRTES- 10

NWINCH-200

C CHOOSE TIME TO WRITE
NKRITE- 100

XWRITE-1.0*NWRITE
C
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C
C CONVERGENCE CRITERIA FOR THE EVAPORATOR END VAPOR TEMPERATURE

EPSQVK-0.01
C
C

C SPECIFIED TRUNCATION ERROR FOR THE VAPOR FLOW
EPSVO0.01

C SPECIFIED BOUNDARY CONDITIONS OF HEAT TRANSFER ON THE HEAT PIPE WALL

QEVAP- 4.3*10000.0

cc TF-941.0

cc HTCF-37043.0

EMISS-1.0
SIGMA-5. 669E-B

TAMB- 0.0

KBURN-0

C
C

C HEAT PIPE GEOMETRY
NGROV-18

NTHETA-4
NTHEPG-4
NRS-4
NRW-4
NR-NRS+NRW

NZ- 40

NEVAP-12
NADIA- 28

ZL- 1.0

NZP1-NZ+l

PLM-NEVAP*DZ
KPLM=NEVAP

RO-0. 009525

RI-0.008262

RW-0.007000

NWIRE-NWINCH/0. 0254

RC=1.0/(2.0*NWIRE)

WIDBAR-2.0*3.1416* (RI+RW) /2.0/2. 0/NGROV/2 .0

DEPTHG-RI -RW
DWICK-2. 0*RW

DTES-2. 0*RTES

DRS- (RO-RI) /NRS
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DRW- (RI-RW) /NRW
DTHETA-2*3. 14/NTHETA/NGROV

DZ-ZL/NZ

XTI NEVAP *DZ

C GROOVE GEOMETRY
JING2-2

JING3-3
C THERMAL CONDUCTIVITY, HEAT CAPACITY AND DENSITY
C SOLID:STAINLESS STEEL, LIQUID:SODIUM

CKSS-18 .4
CKL-75.7
CS-530.0

CL-1305.0
DENS-7744 .0
DENL-882 .0

NTHEP 1-NTHETA

WRITE (6, *) 'NTESTU=' ,NTESTU

WRITE(6,*) RO=',RO, 'PL=',ZL
WRITE(6,*) 'NZ=',NZ, 'NR-',NR, 'NRS-',NRS, 'NRW-',NRW
WRITE(6,*)IQEVAP-u,QEVAP,tSIGMA-I,SIGMA,tTAMB-I,TAMB

C HEAT PIPE STARTING TEMPERATURE
TSTART- 940.0
DO 30 K-1,NZ
DO 33 J-1,NTHEP1

DO 36 1-1,NR
T (I, J, K)-TSTART
TOLD (I, J, K) -TSTART
TV (J, K) -TSTART

36 CONTINUE
33 CONTINUE

TV (K) -TSTART

TVOLD (K)-TSTART
QV(K)-0.0
DQVDA(K)-0.0
QVTES(K)-0.0
DQDATEM()-0.0
DTV(K)-0.0

30 CONTINUE

QETTL-0. 0
QCTTL-0. 0
QTES-0.0
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SUMQVI.0 .0

TIME-0 .0

DO 60 NDT- 1,NDTEND

C PULSE HEAT FLUX SPECIFICATION
IF(NDT.LE.100) PULSE-1.0

IF(NDT.GT.100) PULSE-10.0/4.3

cc IF(NDT.LE.100) PULSE-1.0

cc IF(NDT.GT.100.AND.NDT.LE.1000) PULSE-10.0/4.3
cc IF(NDT.GT.1000) PULSE-1.0

cc IF(NDT.LE.200) PULSE-1.0
cc IF(NDT.GT.200.AND.NDT.LE.400) PULSE-10.0/4 .3

cc IF(NDT.GT.400.AND.NDT.LE.2200) PULSE-1.0
cc IF (NDT.GT.2200.AND.NDT.LE.2400) PULSE-i0.0/4.3

cc IF (NDT.GT.2400.AND.NDT.LE.4200) PULSE-1.0
cc IF (NDT.GT. 4200 .AND.NDT. LE. 4400) PULSE-lO .0/4.3

cc IF (NDT.GT. 4400 .AND.NDT. LE. 6200) PULSE-i .0

cc IF(NDT.GT.6200.AND.NDT.LE.6400) PULSE-10.0/4.3

cc IF(NDT.GT.6400.AND.NDT.LE.8200) PULSE-1.0

cc IF(NDT.GT.8200.AND.NDT.LE.8400) PULSE-10.0/4.3
cc IF(NPT.GT.8400.AND.NDT.LE.10200) PULSE-1.0

IF (NTESTU.EQ. 0) DHYDRO-0 .014

IF (NTESTU.EQ. 1) DHYDRO-0. 0082

IF (NTESTU.EQ. 6) DHYDRO-0.0075

DVAPOR- (DWICK**2 . 0NTESTU*DTES**2 .0) **Q 5

IF(NDT.LE.20) EPSV-0.01

IF(NDT.GT.20) EPSV-0.01

F-0.01

Fi-3. 0-2. 0*F

C DDTV1-1.0

C DTV1i(TV(1)-TIIOLD(i))+DDTV1
DTV1-3.0

DO 10 K-1,NZ

TVOLD (K) -TV (K)
10 CONTINUE

IF((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
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WRITE (6, 40) DT,F
40 FORMAT(3X,'THIS OUTPUT IS FOR DT-',F6.3,3X,'F-'.,F6.3//)

ENDI F

TIME-NDT*DT

C LIQUID PROPERTIES
VISLIO-0.0011-1.45E-6*TV(1)+5.32E-10*Tv(1)**2.0

TENLIQ-0 .22-9. 1E-5*TV (1)
LAMBDA-4636437. 0-180. 8*TV (1)

PCMAX-2. 0*TENLIQ/RC

DO 20 K=1,NZ
QVO (K) -QV (K) +QVTES (K)

TVO(K)-TV(K)
20 CONTINUE

Do 25 K-1,NZ
IF(K.LE.NEVAP) DQDABAR(K)-(SUMQVI/NEVAP)/(2.0*3.1416*RW*DZ

$ ~+NTESTU*2. 0*3. 1416*RTES*DZ)
IF(K.GT.NEVAP.AND.K.LE.NADIA) DQDABAR(K)-0.0
IF(K.GT.NADIA) DQDABAR(K)=-(SUMQvI/(NZ-NADIA))/ (2.0*3.1416*RW*DZ

$ ~+NTESTU*2.0*3. 1416*RTES*DZ)

25 CONTINUE
C

C &&&&COMPUTATION FOR THE FIRST ONE-THIRD TIME STEP &&&&&&&&&

NAD I-i23

QHP-0.0

DO 180 J-1,NTHEPI
NGORD- (J-1) /NTHEPG+l
JING-J- (NGORD-1) *NTHEPG
DO 160 I-1,NR
DO 100 Kin1,NZ

IF(NDT.EQ.l) QV(K-0.0

IF(K.LE.KBURN) THEN
CKL-0.0000001

ELSE
CKL-7 5.7
ENDIF

IF (K. LE.NEVAP) QWALL (J, K) -PLLSE*QEVAP
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cc IF(K.LE.NEVAP) QWALL(J,K)-HTCF* (TF-TW(J,K))
IF (K.GT.NEVAP .AND.K.LE.NADXA) QWALL (JK) -0.0
IF(K.GT.NADIA) QWALL(J,K)-EMISS*SIGMA*(TAMB**4.0-TW(J,K)**4.O)

IF(I.LE.NRS) THEN
R-RO- (1-0.5) *DRS
DR-DRS
CKP-CKSS
CKN=CKS S
CKS-CKSS
CKE-CKSS
CKW-CKS S
CKF=CKSS
CKB-CKSS
DENP-DENS
CP-CS
IF (I .EQ.NRS.AND.JING.GE.JING2 .AND.JING.LE.JING3) CKS-

$ ~CKSS*CKL* (DRS+DRW)/ (CKSS*DRW+CKL*DRS)
ENDI F

IF(I.EQ.1) THEN
RlM-R
DR1-DR
CKIM-CKN
END IF

IF(I.GT.NRS) THEN
R-RI- (I-NRS-0.5) *DRW
DR-DRW
IF(JING.LT.JING2.OR.JING.GT.JING3) THEN
CKP-CKS S
CKN-CKSS
CKS-CKSS
CKE-CKSS
CKW-CKSS
CKF-CKSS
CKB-CKSS
DENP-DENS
CP-CS
IF(JING.EQ. (JING2-1)) CKF-2.0*CKSS*CKL/ (CKSS+CKL)
IF (JING. EQ.(JING3+1)) CKB-2. 0*CKSS*CKL/ (CKSS+CKL)

ENDIF

IF(JING.GE.JING2.AND.JING.LE.JING3) THEN
CKP-CKL
CKN-CKL

CKS-CKL
CKE-CKL
CKN-CKL
CKF-CKL
CKB-CKL
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DENP-DENL
CP-CL
IF(I.EQ. (NRS+1)) CKN-CKSS*CKL* (DRS+DRW) /(CKSS*DRW+CKL*DRS)
IF(JING.EQ.JING2) CKB..2.O*CKSS*CKL/ (CKSS+CKL)
IF(JING.EQ.JING3) CKF-2.0*CKSS*CKL/ (CKSS+CKL)

ENDIF
END IF

VOLP- ((R+DR/2) **2.0* (R-DR/2) **2 .0) *(DTHETA/2) *DZ
QHP-QHP+DENP*VOLP*CP* (T (I, J,K) -TSTART) *NGROV

IF(I .EQ.NR.AND.JING.NE.JING2.AND.JING.NE.JING3.AND.
$ DQDABAR(K).GT.0.0) CKS-0.0

C--CKW*Fl
A-3.0*DENP*CP*DZ**2.0/DT+CCKW+CKE) *Fl
B--CKE*Fl
D2- (DZ**2.0*CKN* (R+DR/2.0) /R/DR**2 .0) *F
D3-(DZ**2.0*CKS* (R-DR/2.0) /R/DR**2.0)*F
D4- (DZ**2. Q*CjB/ (R*DTHETA) **2.0) *F
D5- (DZ**2. 0*CKF/ (R*DTHETA) **2 .0) *F

IF(J.EQ.1) D4-0.0
IF (J.EQ.NTHETA) D5-0.0

D1-3. 0*DENP*CP*DZ**2. 0/DT-D2-D3-D4-D5

IF(I.EQ.1..OR. I.EQ.NR.OR.J.EQ. 1.OR.J.EQ.NTHEP1) THEN

D7-(2.0*DZ**2.0*CKS*(R-DR/4.0)/R/DR**2.0)*F

IF(I.EQ.1.OR.I.EQ.NR) THEN
IF(J.EQ.1.OR.J.EQ.NTHEF1) THEN
IF(I.EQ.1.AND.J.EQ.l) D-(D1+D2) *T(I,J,K)+D3*T(I+1,J,K)

$ +D5*T(I,J+1,K)
$ + (QWALL (J, K) *RO*DZ**2 .0/R/DR) *F

IF(I.EQ.1.AND.J.EQ.NTHEPl) D-(Dl+D2) *T(I,J,K)+D3*T(I+1,J,K)
$ +D4*T(I,J-1,K)
$ + (QWALL (J,K) *RO*DZ**2 .0/R/DR) *F

IF(I.EQ.NR.AND.J.EQ.1) D-(D1+D3) *T(I,J,K)+D2*T(I..1,J,K)
$ +D7*TVOLD(K) +D5*T(I,J+1,K)-D7*TOLDCI,J,K)

IF(I.EQ.NR.AND.J.EQ.NTHEF1) D-(Dl+D3) *T(I,J,K)
$ +D2*T(I-1,J,K)+D7*TVOLD(K)+D4*T(I,J-1,K)-D7*TOLD(I,J,K)

ELSE
IF(I.EQ.1) D-(D1+D2) *T(I,J,K)+D3*T(I+1,J,K)+D4*T(I,J-.1,K)

$ +D5*T(I,J+1,K)+(Q2WALL(J,K)*RO*DZ**2.O/R/DR)*F
IF(I.EQ.NR) Din(D1+D3)*T(I,JK)+D2*T(I-1,J,K)

$ +D7*TVOLD(K)+r4*T(I,J-1,K)+D5*T(I,J+1,K)-D7*TOLD(I,J,K)
ENDIF
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ELSE
IF(J.EQ.l) D=Dl*T(I,J,K) +D2*T(I-1,J,K) +D3*T (I+1,J,K)

$ +D5*T (I,J+1, K)
IF(J.EQ.NTHEPI) D=Di*T(I,J,K)+D2*T(I-i,J,K)+D3*T(I+i,J,K)

$ +D4*T (I, J-1,K)
ENDIF

ELSE
D=Dl*T(I,J,K)+D2*T(I-1,J,K)+D3*T(I+1,J,K)+D4*T(I,J-1,K)

$ +D5*T(I,J+i,K)

ENDIF
IF (Dl.LT. 0.0) WRITE (6, 128) IJ,K

12-8 FORMAT(lX,'Di-(-) IN ROOP3 I,J,K-1,3(2X,I3))
IF(Di.LT.0.0) GO TO 1000
IF(K.EQ.1) THEN
C-0 .0
A-A-CKW* Fl
B-B
D-D

ENDI F

IF(K.EQ.NZ) THEN
C-C
A-A-CKE*Fl

B-0.0

D-D
ENDIF

C
C TDMA ALGORITHM

C
P (K) -B/ (A+C*P (K-i))
Q (K) -(D-C*Q (K-i) ) /(A+C*P (K-i))

IF(I.EQ.NR) (-KNR(J 7 K)-CKS
IF(K.LE.KBURN) CKNR(J,K)-0.0

IF(NDT.EQ.1.AND.I.EQ.NR) THEN
QVIN-CKNR(J,K) *(DTHETA* (RW+DRW/4 .0) *DZ) *NGROV

$ *(T(NR,J,K)-.TVOIJD(K))/(DRW/2.0)

QV (K) -QV (K) +QVIN
DQVDA(K)-QV(K) /(2.0*3.1416*RW*DZ)
END IF

100 CONTINUE

DO 170 Kiil,NZ
K-NZ+1-Kl
TT(I,J,K)-P(K)*TT(I,J,K+l)+Q(K)

170 CONTINUE
160 CONTINUE

180 CONTINUE
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IF(NDT.EQ.1) GO TO 182

AEVAP,.NEVAP*DZ* (2.0*3.1416*Ro)
ACOND- (NZ-NADIA) *DZ* (2.0*3. 1416*Ro)
TCAVG-0. 0

DO 110 K-NADIA+1,NZ

DO 115 J-1,NTHETA
TCAVG-TCAVG+TW (J, K)/ (NTHETA* (NZ-NADIA))

115 CONTINUE
110 CONTINUE

QWTES-'0.0

DO 187 K-1,NZ
QWTES=QWTES+QVTES (K)

187 CONTINUE

XXX=AEVAP*QEVAP *PULSE
QETTL-Q)ETTL+AEVAP *QEVAP *PULSE*DT
QCTTL=QCTTL+ACOND*EMISS*SIGMA* (TCAVG**4 . 0TAMB-*4 .0) *DT
QTES-QTES -QWTES *DT

182 DO 193 K-1,NZ
DO 194 J-1,NTHEP1
DO 195 I-1,NR
T(I,J,K)-TT(I,J,K)

195 CONTINUE
194 CONTINUE
193 CONTINUE

C
C &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
C ~&&&6COMPUTATION FOR THE SECOND ONE-THIRD TIME STEP &&f&&6&&

NADI-1123

DO 280 I-1,NR
DO 260 K-1,NZ
DO 200 J-1,NTHEP1

NGORD- (J-1) /NTHEPG+1
JING-J- (NGORD-1) *NTHEPG

IF(K.LE.KBURN) THEN
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CKL-O.0 000001
ELSE
CKL=75.7

ENDI F

IF(I.LE.NRS) THEN
R-RO- (1-0.5) *DRS
DR-DRS
CKP-CKSS
CKN-CKSS
CKS-CKSS
CKE=CKSS
CKW-CKSS
CKF-CKSS
CKB-CKS S
DENP-DENS
CP-CS
IF(I .EQ.NRS.AND.JING.GE.JING2.A.ND.JING.LE.JING3) CKS=

$ ~CKSS*CKL* (DRS+DRW) /(CKSS*DRW+CKL*DRS)
END IF

IF(I.GT.NRS) THEN
R-RI- (I-NRS-0 .5) *DRWj
DR-DRW
IF(JING.LT.JING2 .OR.JING.GT.JING3) THEN
CKP-CKSS
CKN-CKSS
CKS-CKS S
CKE-CKSS
CKW-CKSS
CKF-CKS S
CKB-CKSS
DENP-DENS
cp-cs
IF(JING.EQ. CJING2-1)) CKF-2. 0*CKSS*CKL/ (CKSS+CKL)
IF(JING.EQ. (JING3+1)) CKB-2.0*CKSS*CKL/ (CKSS+CKL)

ENDI F

IF(JING.GE.JING2.AND.JING.LE.JING3) THEN

CKP-CKL
CKN-CKL
CKS-CKL
CKE-CKL
CKW-CKL
CKF-CKL
CKB-CKL
DENP-DENL
CP-CL
IF(I .EQ. (NRkS+1)) CKN-CKSS*CKL* (DRS+DRW) /(CKSS*DRW+CKL*DRS)
IF(JING.EQ.JING2) CKB-2. 0*CKSS*CKL/ (CKSS+CKL)
IF(JING.EQ.JING3) CKF-2. 0*CKSS*CKL/ (CKSS+CKL)
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ENDIF

ENDIF

IF(I .EQ.NR.AND.JING.NE.JING2.AND.JING.NE.JING3.AND.

$ DQDABAR(K).GT.0.0) CKSO0.0

C--CKB*Fl
A-3. O*DENP*CP* (R*DTHETA) **2.0/DT+ (CKB+CKF) *Fl

B--CKF*Fl
D2-(R*DTHETA**2.0*CKN* (R+DR/2.0)/DR**2.0)*F
D3- (R*DTHETA**2 . 0CKS* (R-DR/2.0) /DR**2.0) *F
D4- ((R*DTHETA) **2 .0*CKW/DZ**2 .0) *F
D5- ((R*DTHETA) **2.0*CKEIDZ**2 .0) *F
IF(K.EQ.1) D4-0.0
IF(K.EQ.NZ) D5-0.0
D1-3. 0*DENP*CP* (R*DTHETA) **2.0/DT-D2-D3-D4-D5

IF (I.EQ.l1.OR. I.EQ.NR.OR.K.EQ. 1.OR.K.EQ.NZ) THEN

D7- (2. 0*R*DTHETA**2. 0*CKS* (R-DR/4. 0) /DR**2. 0) *F

IF(I.EQ.1.OR.I.EQ.NR) THEN

IF(K.EQ.1.OR.K.EQ.NZ) THEN
IFCI.EQ.1.AND.K.EQ.1) D-(Dl+D2) *T(I,J,K)+D3*T(I+1,JK)

$ +D5*T(I,J,,K+1)+(QWALL(J,K)*RO*R*DTHETA**2.0/DR) *F
IF(I.EQ.1.AND.K.EQ.NZ) D-(Dl+D2) *T(I,J,K)+D3*T(I+l,J,K)

$ +D4*T(I,J,K-1)+(QWALL(J,K)*RO*R*DTHETA**2.o/DR)*F
IF(I.EQ.NR.AND.K.EQ.l) D-(D1+D3-D7) *T(I,J,,K)+D2*T(I-.1,J,K)

$ +D7*TVOLD (K) +D5*T (I, J, K+l)
IF(I.EQ.NR.AND.K.EQ.NZ) D=(Dl+D3-D7) *T(I,J, K) +D2*T (I1,J, K)

$ +D7*TVOLD(K)+D4*T(I,J,K-.1)
ELSE
IF(I.EQ.1) D-(Dl+D2) *T(I,J,K)+D3*T(I+1,J,K)+D4*T(IJK-1)

$ +D5*T(I,J,K+1)+(QWALL(J,K)*RO*R*DTHETA**2.0/DR) *F
IF(I.EQ.NR) D-(Dl+D3-D7) *T(I,J,K)+D2*T(I-1,J,K)

$ +D7*TVOLD(K) +D4*T(I,J,K-1)+D5*T(I,J,K+1)

END IF
ELSE
IF (K.EQ. 1) D=Dl*T(I,J,K) +D2*T(I-1, J,K) +D3*T (I+1,J, K)

$ +D5*T (I, J, K+l)
IF(K.EQ.NZ) D-D1*T (I,J,K)+D2*T(I-1,J,K)+D3*T(I+1,J,K)

$ +D4*T(I,J,K.-1)
ENDI F

ELSE
D-Dl*T(I,J,K)+D2*T(I-1,J,K)+D3*T(I+1,J,K)+D4*T(I,J,K-1)

$ +D5*T (I, J, K+l)
ENDIF
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224 IF(D1.LT.0.0) WRITE(6,228) I,J,K
228 FORMAT(lX,.D1-(-) IN ROOP2 I,J,K-,3(2X,I3))

IF(D1.LT.0.0) GO TO 1000

IF(J.EQ.1) THEN
A-A-CKB*Fl

B-B
D-D
END IF
IF(J.EQ.NTHEPl) THEN

C=C
A-A-CKF*Fl
D-D

ENDI F
C
CTDMA ALGORITHM

C
IF(J.EQ.l) THEN
P (J)--B/A
Q(J)-D/A

ELSE

P(J)=-B/ (A+C*P(J-1))
Q(J)-(D-C*Q(J-1) ) /(A+C*P(J-1))

END IF
200 CONTINUE

DO 270 J1=1,NTHEP1
J-NTHEP 1 +1-Ji
IF(J.EQ.NTHEPl) TT(ItJK)=Q(J)
IF(J.NE.NTHEPl) TT(I,J,K)=P CJ) *TT(I,J+1,K)+Q)(J)

270 CONTINUE
260 CONTINUE
280 CONTINUE

DO 293 K-1,NZ
DO 294 J-1,NTHEPI
DO 295 I-1,NR

T (IJ,K)-TT(I,J,K)
295 CONTINUE
294 CONTINUE

293 CONTINUE

IF(IPCM.EQ.2) THEN

CALL TES
ENDIF

C

C &&&&&COMPUTATION FOR THE THIRD ONE-THIRD TIME STEP &&~&
NADI- 4

NQVO'0

350 DO 405 K-1,NZ
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QVOLD (K) -QV (K) +QVTES (K)
TVOLD (K) -TV (K)

405 CONTINUE

NQVO-NQVO+1
Cl IF(NQVO.GT. 1) GO TO 450

DO 448 K-1,NZ
IF(NQVO.GT.1) DQVDA(K)-DQVDA(K)+FRELAX* (DQVDAN(K) -DQVDA (K))
IF(NQV0.GT. 1) DQDATE(K)..DQDATE(K)+FRELAX* (DQDATN(K) -DQDATE(K))

448 -CONTINUE

C
C GUESS TV(KBURN+l) FOR THE NEXT TIME STEP

TVEE1-0. 0
TVEE2-0. 0
NCALLV-0

400 NCALLV-NCALLV+l

IF(NCALLV.GT. 200) THEN
WRITE(6,*)'NCALLV > 200'
GO TO 1000

ENDIF

IF(NCALLV.EQ.l) TV(KBURN+1)-TVO(KBURN+1)+DTV3.
IF(NCALLV.EQ.2) TV(KBURN+1)-TVO(KBURN+1)-DTV1
IF(NCALLV.GT.2) THEN
IF((TVEE1*TVEE2) .EQ.0.0) THEN
WRITE (6, *) 'TVEE1*TVEE2-0.0I

GO TO 1000
ELSE
TV(KBURN+1)-(TVEE1+TVEE2) /2.0
END IF

ENDI F

C IF((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
C WRITE(6,*) 'NCALLV-',NCALLV, 'TVO-',TV(KBURN+1)
C ENDIF

Cl CALL BOWMAN

CALL CHI

DO 415 N- l,NZ
Cl TV(N)-TV(KBURN+l)
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TV (N) =TVREAL (N)
415 CONTINUE

DO 380 K-1,NZ
DO 360 J-1,NTHEPI
NGORD- (J-1) /NTHEPG+l
JING-J- (NGORD-1) *NTHEPG
DO 300 I-1,NR

IF (K. LE.KBURN) THEN
CKL-0.0000001

ELSE
CKL-7 5.7

END IF

IF(I.LE.NRS) THEN
R-RO- (1-0.5) *DRS
DR-DRS
CKP-CKSS

CKN-CKSS
CKS-CKSS

CKE-CKSS
CKW-CKSS

CKF-CKSS
CKB-CKSS

DENP-DENS
CP-CS
IF(I .EQ.NRS.AND.JING.GE.JING2.AND.JING.LE.JING3) CKS-

$ ~CKSS*CKL* (DRS+DRW) /(CKSS*DRW+CKL*DRS)
ENDI F

IF(I.GT.NRS) THEN

DR-DRW
IF(JING.LT.JING2.OR.JING.GT.JING3) THEN
CKP-CKSS
CKN-CKSS

CKS'.CKSS
CKE-CKSS
CKW-CKSS
CKF-CKSS

CKB-CKSS

DENP -DENS
CP-CS
IF(JING.EQ. (JING2-1)) CKF-2.0*CKSS*CKL/ (CKSS+CKL)
IF(JING.EQ. (JING3+1)) CKB-2.0*CKSS*CKL/ (CKSS4CKL)

ENDIF
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IF(JING.GE.JING2.AND.JING.LE.JING3) THEN
CKP=CKL

CKN-CKL

CKS-CKL
CKE-CKL
CKW-CKL

CKF-CKL
CKB-CKL
DENP-DENL
CP-CL
IF(I.EQ. (NRS+1)) CKN=CKSS*CKL* (DRS+DRW) /(CKSS*DRW+CKL*DRS)
IF(JING.EQ.JING2) CKB=2.0*CKSS*CKL/ (CKSS+CKL)
IF(JING.EQ.JING3) CKF-2.O*CKSS*CKL/ (CKSS+CKL)

ENDIF

ENDIF

IF(I.EQ.NR.AND.JING.NE.JING2.AND.JING.NE.JING3.AND.

$ DQDABAR(K).GT.0.0) CKS=0.0

C--CKN* (R+0. 5*DR) *Fl
A-3. O*DENP*CP*R*DR**2. 0/DT+ CCKN* (R+0.5*DR)

$+CIKS* (R-0. 5*DR) ) *F
B--CKS* (R-0. 5*DR) *F

D2= (DR**2 .0*CKB/R/DTHETA**2.0) *F
D3- (DR**2 . *CKF/R/DTHETA**2.0) *F
D4=(R*DR**2.0*CKW/DZ**2.0) *F
D5= (R*DR**2. *CKEIDZ**2.0) *F

IF(J.EQ.1) D2-0.0
IF(J.EQ.NTHETA) D3-~0.0

IF(K.EQ.1) D4-0.0
IF(K.EQ.NZ) D5-0.0

01=3. 0*DENP*CP*R*DR**2 .0/DT-D2-D3-D4-D5
IF(J.EQ.1 .OR.J.EQ.NTHEP1 .OR.K.EQ.1 .OR.K.EQ.NZ) THEN
IF(J.EQ. 1.OR.J.EQ.NTHEP1) THEN
IF(K.EQ.1.OR.K.EQ.NZ) THEN

IF (J.EQ. 1.AND.K.EQ. 1) D=D1*T(I,J,K)
$ +D3*T(I,J+1,K)+D5*T(I,J,K+1)

IF(J.EQ. 1.AND.K.EQ.NZ) D-D1*T(I,J,K)
$ +D3*T(I,J+1,K) +D4*T (I,J,K-1)

IF(J.EQ.NTHEP1 .AND.K.EQ. 1) D=Dl*T(I,J,K)+D2*T(I,J-1,K)
$ +D5*T (I,J, K+1)

IF(J.EQ.NTHEP1 .AND.K.EQ.NZ) D=Dl*T(I,J,K)+D2*T(I,J-1,K)
$ +D4*T(I,J,K-1)

ELSE
IF(J.EQ. 1) D=D1*T(I,J,K) +D23*T(I,J+1,K)

$ +D4*T(I,J,K-1)+D5*T(I,J,K+l)
IF(J.EQ.NTHEPI) D=Dl*T(I,J,K) +D2*T(I,J-1,K)
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$ +D4*T(I,J,K-1) +D5*T (I, J,K+1)

END IF
ELSE
IF (K.EQ. 1) D=D1*T(I,J,K) +D2*T (I,J-1,K) +D3*T(I,J+1,K)

$ +D5*T(I,J,K+l)

IF (K.EQ.NZ) D=Dl*T (I,J,K).ID2*T(I,J-1,K) +D3*T (I,J+1,K)
$ +D4*T (I, J, K-1)

ENDIF
ELSE
D=Dl*T(I,J,K)+D2*T(I,J-1,K)+D3*T(I,J+1,K)+D4*T(I,J,K-1)

$ +D5*T (I, J, K+l)

ENDIF

IF(Dl.LT.O.0) WRITE(6, 328) I.J,K
328 FORMAT(lX,'D1=(-) IN ROOPi I,J,K=',3(2X,13))

IF(Dl.LT.0.0) GO TO 1000

IF(I.EQ.1) THEN
C=0. 0
A=A-CKN* (R+DR/2 .0) *Fl

B=B

D=D+ (OWALL (J, K) *RO*DR) *F1
ENDIF
IF(I.EQ.NR) THEN

C-C
A=A+CKS*R*Fl
B-0.0
D-D+2 .0*CKS* (R-DR/4.0) *TV (K) *Fl

ENDIF
C
C TDMA ALGORITHM

C

Q(I)-(D-C*Q(I-1) ) /(A+C*P (11))

300 CONTINUE

DO 370 Il-1,NR

I-NR+1-Il

TT(I,J,K)-P(I)*TT(I+1,J,K)+Q(I)
370 CONTINUE

360 CONTINUE

380 CONTINUE

IF(IPCM.EQ.2) THEN

CALL TES
END IF

C
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C SEARCHING FOR TV(KBURN+1) FOR NEXT TIME STEP

C
QIN-O.O
STJMQVI-=0.0

StJMQVO-O.0

DO 410 K-1,NZ
QV(K-0.0

DO 420 J-1,NTHETA
NGORD- (J-1) /NTHEPG+1

JING-J- (NGORD-1) *NTHEPG

DO 430 I=1,NR

IF(I.EQ.NR) QVIN-CKNR(J,K)* (DTHETA* (RW+DRW/4.0)*DZ)*NGROV
$ ~*(TT(NR,J,K)-.TV(K))/(DRW/2.0)

430 CONTINUE
QV(K)-Q)V(K)+QVIN

420 CONTINUE

IF(QV(K) .GT.0.0) QIN-QIN+QV(K)

IF( (QV(K)+QVTES(K)) .GT.0.0) SUMQVI-SUMQVI+(QV(K)+QVTES(K))

IF( (QV(K)+QVTES(K)) .LE.0.0) SUMQVO-SUMQVO-(QV(K)+QVTES(K))

410 CONTINUE
C

SUMQV-SUMQVI -SUMQVO

IF( (NDT/XW1'RITE) .EQ. (NDT/NWRITE)) THEN
C WRITE(6,*) *SUMQV=t 1 SUMQV, 'QVI-',StJMQVI, 'QVO=',SUMQVO

ENDI F

IF ((ABS (SJMQV) /ABS (SUMQVI+SUMQVO)) .GT.EPSV) THEN

IF(SUMQV.LE.0.0) TVEEI-TV(KBURN+1)
IF (SUMQV.GT.0.0) TVEE2-TV (KBURN+l)

GO TO 400
ELSE
GO TO 440

ENDIF
C
C
440 IF((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN

C WRITE(6,*)'NCALLV-=,NCALLV
END IF

Cl CALL BOWMAN
Cl CALL CHI

PVMIN-PV (KBURN+1)
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DO 465 N-KBURN+2,NZ
IF (PV (N) .LT.PVMIN) THEN
PVMIN-PV (N)
KPVMI N-N

ENDI F

465 CONTINUE

CALL LIQUID

IF( (NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
WRITE(6,*)' Z Pv PL DPV DPL'
DO 460 N-KBURN+1,NZ
Z= (ZL/NZ) *(N-0 .5)

DPV(N)-PV(N) -PV(l)
DPL(N)-PL(N) -PL(l)

wRITE(6,462) Z,PV(N),PL(N),DPV(N),DPL(N)
462 FOP.MAT(2X,F8.4,4 (2X,F8.1))
460 CONTINUE

ENDIF

DPVMAX-PV (KBURN+1) -PVMIN
DPLMA.X-PL (NADIA+1) -FL(KBURN+1)
PCMAX-2. 0*TENLIQ/RC

C IF( (NDT/NWRITE) .EQ. (NDT/XWRITE)) WRITE(6,*) 'DPVMAX- IDPVMAX
C $ ,'DPLMA-X-1,DPLMAX,IPCMAX-1,PCMAX

DO 442 K-1,NZ
QVNEW (K) -QV (K) +QVTES (K)
TVNEW (K) -TV (K)
DQVDAN(K)-QV(K) /(2.0*3.1416*RW*DZ)
IF(IPCM.EQ.1) GO TO 442
DQDATN (K) -QVTES (K) /(NTESTU*2.0*3.1416*RTES*DZ)

442 CONTINUE

IF(METHOD.E0.1) GO TO 450

DO 445 K-1,NZ
C WRITE(6,906)K,QV(K),QVTES(K),QV(K)+QVTES(K)
C IF(K.GT.l.AND. ((QV(K)+QVTES(K))-(QV(K-1)+QVTES(K-1))).LT.O0.)
C $PLM-K*DZ
C445 CONTINUE
C IF( (NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
Cl WRITE(6,*)'PLM-',PLM
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Cl WRITE(6,*P'
Cl WRITE(6,*)'

Cl WRITE(6,*) 'NQVO=',NQVO
Cl WRITE(6,*)'QV0=',QV0(1),'QV0OLD-',QVOLD(l),'QVONEWs-a,QVNEW(l)

Cl WRITE(6,*)sTV0=',TV0(l),eTVOOLD-l,TVOLD(l),'rVONEW-e,TVNEW(l)
Cl WRITE(6,*)'

Cl WRITE(6,*P'

C ENDIF

Cl IF(ABSC(TVNEW(l)-TVOLD(l))/(TVNEW(l)-TVO(l))).LE.EPSQVK) THEN
Cl WRITE(6,*)'

Cl WRITE(6,*)'TV0 CONVERGE NOW!'

Cl WRITE(6,*)'

Cl ENDIF

NWOO-0
DO 452 K-1,NZ

IF(ABS( (TVNEW(K)-TVOLD(K) )/ (TVNEW(K)-TVO(K))) .GT.EPSQVK)
$NWOO-NWOO+l

IF(NWOO.GE.30) GO TO 350

452 CONTINUE

450 DO 455 K=l,NZ
DQVDA (K) -DQVDAN (K)
DQDATE (K)-DQDATN (K)

455 CONTINUE

NADI -6

IF(IPCM.EQ.2) THEN
CALL TES

END IF

THPTTL-0 .0
TVTTL-0. 0

DO 393 K-l,NZ
DO 394 Jl1,NTHEPl

NGORD- (J-l) /NTHEPG+l
JING-J- (NGOP.D-l) *NTHEPG

DO 395 I-l,NR
IF(I.GT.NRS.AND.JING.GE.JING2.AND.JING.LE.JING3.AND.K.LE.KBUP.N)

$THEN
T (I,J, K)-TV(K)

ELSE

T(I,J,K)-TT (I,J,K)
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ENDIF
TOLD(I,J,K) =T(I,J,K)

THPTTL-THPTTL+T (I, J,K)

395 CONTINUE
TW(J,K)-T(1,J,K)+(DRI/2.0)*QWALL(J,1c)*RO/CKICM/(R1M+DR1/4.0)

394 CONTINUE
TVTTL-TVTTL+TV (K)
DTV (K) =TV (K) -TVOLD (K)

393 CONTINUE

THPAVG (NDT) -THPTTL/NZ/NTHEPl/NR
TVAVG (NDT) 'TVTTL/NZ

CTIME (NDT) -TIME

IF((NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN

WRITE (6, 910)

910 FORMAT(lX,//////)
WRITE (6, 920) TIME

920 FORMAT(.28X,'TIME=',2X,F7.2,2X,'SECONDS',/)

WRITE(6,*)'
WRITE(6,*)'
WRITE(6,*)

WRITE(6,940) (TW(2,K),K=1,NZ, 4)
940 FORMAT(1X,' WALL',10(lX,F6.1))

DO 900 I-1,NR
WRITE(6,950)I, (T(I,2,K) ,K=1,NZ, 4)

950 FORMAT(lX,'I-',I3,10(lX,F6.1))
900 CONTINUE

WRITE(6,960) (TV(K),K-1,NZ, 4)

960 FORMAT(lX,'VAPOR',10(lX,F6.1)///)
WRITE(6,970) THPAVG(NDT)

970 FORMAT(2X,'AVERAGE HEAT PIPE TEMPERATURE-',2X,F9.4)
WRITE(6,980) TVAVG(NDT)

980 FORMAT(2X, 'AVERAGE VAPOR TEMPERATURE-' ,2X,F9.4///)

END IF

C

C
C

IF( (NDT/XWRITE) .EQ. (NDT/NWRITE)) THEN
IF(IPCM.EQ.2) THEN
WRITE(6,*)' TES TEMPERATURE
WRITE(6o*)'
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DO 990 I-1,NRTES,2
WRITE(6,930) I, (TE(I,K),K=1,NZ, 4)

930 FORMAT(lX,'IE-',I3,10(lX,F6.1))
990 CONTINUE

ENDI F
ENDIF

IF ((NDT/NWRITE).EQ. (NDT/XWRITE)) THEN

PCTQWTES- (QWTES/QIN) *100.0
WRITE(6,*) 'SUMQVI=',SUMQVI, 'SUMQVO=',SUMQVO
WRITE(6,*) 'QIN=',QIN, 'QWTES-',QWTES, '%QWTES-',PCTQWTES, '%I
WRITE(6,*)IQEVAP=', XXX

WRITE(6,*)'

WRITE(6,*)w

C ENERGY BALENCE CHECK
IF(NDT.GT.l.AND. ((NDT/NWRITE) .EQ. (NDT/XWRITE))) THEN
ERRORi- (QETTL- (QCTTL+QHP+QPCM) )/QETTL*100.0
ERROR2= (QETTL- (QCTTL+QHP+QTES) )/QETTL* 100. 0
IF(IPCM.EQ.2) ERROR3=(QTES-QPCM) /QTES*100.0
IF(IPCM.EQ.2) PCTMELT=QMELT/QPCHTTL*100. 0

WRITE (6, 902) QETTL, QCTTL,QHP,QPCM,QTES

902 FORMAT(lX,'QETTL-',F9.1,2X,'QCTTL=',F9.1,2X,'QHP-',F8.1,2X
$ ,'QPCM=I,F8.1,2X,IQTES=',F8.1/)

WRITE (6, 903) ERRORi, ERROR2, ERROR3, PCTMELT
903 FORMAT(lX,'ENERGY BALENCE ERROR-',2XF6.2,' %',2X,F6.2,' %,

$ 2X,F6.2,1 %',2X,'%MELT~=,F6.2,1 %'///)
ENDIF

C DO 905 K-1,NZ
C WRITE(6,906)K,QV(K),QVTES(K),QV(K)+QVTES(K)
C 906 FORMAT(lX,I3,3X,'QV-',FlO.5,5X,'QVTES-',FlO.5,SX,'QVNET=',F10.5)

C 905 CONTINUE
C WRITE(6,*)IPLM-1,PLM
C WRITE(6,*) 'NQVO=',NQVO, 'FRELAX=',FRELAX

DO 915 N=1,NZ
WRITE(6,916) N, PV(N),DPV(N),TVREAL(N),DENV(N)

916 FORI4AT(lX,'N=',I3,2X,'PV(N)-',1X,F8.1,2X,'DPV(N)-',lX,F8.1,
$ 2X,'TV(N)=',1X,F7.2,2X,'DENV(N)=',lX,F8.6)

915 CONTINUE

ENDI F

IF (NDT.EQ.NDTEND.OR.NQVO.GT. 600) THEN

C DO 982 K-1,NZ
C WRITE(6,983) K,DQVDA(K)
C983 FORHAT(3X,'X-',I3,2X,'DQVDA-',F15.3)
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C982 CONTINUE

GO TO 999
ENDI F

60 CONTINUE

999 IF(IPCM.EQ.l) WRITE(6,*)'C WITHOUT TES'
IF(IPCM.EQ.2) WRITE(6,*)'C WITH TES'
IF(METHOD.EQ.l) WRITE(6,*) 'C EXPLICIT WITH VAPOR'
IF(METHOD.EQ.2) WRITE(6,*) 'C IMPLICIT WITH VAPOR'

WRITE(6,*)'C',NTESTU=',NTESTU,'RTES-I,RTES,IDT-U,DT,'F=s,F

WRITE(6,*)'C TIME -THP- -T'

DO 995 NDT-NWRITE,NDTEND,NWRITE
WRITE (6, 996) CTIME (NDT) ,THPAVG (NDT) ,TVAVG (NDT)

996 FORMAT(1X,F7.2,2(2X,F8.2))

995 CONTINUE
1000 STOP

END

C
C
C
C

C
C *SUBROUTINE BOWMAN
C
C

C
SUBROUTINE BOWMAN

C ONE DIMENSIONAL COMPRESSIBLE VAPOR FLOWFOR HEAT PIPE

REAL *8 TV(100)

COMMON /HPIPE/ TV,DQDATE(100),PL,DZ,NZ,NDT,QVTES(100),
$NTESTU,TIME,KBURN,NWRITE,XWRITE,NGROV,RW,NADIA,PV(100)

COMMON /VCORE/ DQDA(100),DQDABAR(100),IPCM,PVTTL(100)
$ ,TVREAL(100) ,PLM,DTES,DVAPOR,DWICK,DHYDRO,XMMAX,KPLM
$ ,NEVAP,XTI,DENV(100)
IF(IPCM.EQ.l) THEN
DO 10 N-1,NZ
QVTES(N)-0.0

DQDATE (N)-0. 0
10 CONTINUE

ENDI F

C GUESS THE VAPOR TEMPERATURE AT THE EVAPORATOR END TO
TO-Tv (KBURN+l)
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C
OMEGA-O .25
R-361 .5

C WRITE(*,*)'RCONST=',R
LAMBDA-4636437.26-180. 817*TO

GAMMA-i .67
GAMMl-GAM~MA/ (GAMMA-i .0)

C
C INITIALIZE THE VARIABLES AT THE UPSTREAM PIPE END
C

W-0. 0
Z-0,0
RHO=6.335E08*1O.0** (-5567.0/TO) /TO**1.5
PO-RHO*R*TO

C
C USE INCOMPRESSIBLE MODEL TO GET THE STARTTNG VALUES
C

RHOV--DQDABAR (KBURN+1) /LAMBDA
RHOVTE-RHOV

C2-GAMMA*P 0/RHO
XM22- (4.0* (RHOV*DWICK+NTESTU*RHOVTE*DTES) *DZ/RHO/DVAPOR**2.0) **2

$/C2
W2-W-RHOV*DZ*DWICK*3. i4i6-NTESTU*RHOVTE*DZ*DTES*3. 1416
Z2-Z+DZ/2 .0
P2-PO/ (1.0+ (GAMMA-i .0)/2. 0*XM22) **GA4M4i
P02-PO
RH02-RHO
TV (KBURN+1)-TO
TVREAL (KBURN+1) -TO
PV (KBURN+1)-PO

PVTTL (KBURN+1) P0
DENV (KBURN+1) RHO

C
C MARCHING DOWN THE PIPE FINDING THE FLOW PROPERITIES ALONG THE WAY
C

* Z-Z2

C

C
* C

cc WRITE(6,*)' Z/PL P2/PO T
cc W2 XM22'

XMMAX- . 0

DO 5 N-KBURN+2,NZ
XM2-XM22
IF(XM2.GT.O.99) THEN
WRITE (6, 7 0) Z, XM2
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70 FORMAT(3X,'Z-',F6.3,3X,'XM2-',F6.3)
ENDIF

2=22

P01-P02
W-W2
Z=Z+DZ

C
C PREDICTOR AND CCRRECTOR STEPS
C
C CALCULATE THE INFLUENCE COEFFICIENTS
C

XM2BAR- (XM2+XM22) /2.0

CON1-1 .0+ (GAMMA-i .0) /2. 0*XM2BAR
CON2=1 .0-XM2 BAR
CON3=1. 0+GAMMA*XM2BAR
CON4-GAMMA*XM2BAR
FW.2. 0*CON3*CONl/CON2
FWP-CON4

C
C FIND THE MASS ADDED THROUGH THE PIPE WALL

C
RHOV=-DQDABAR (N) /LAMBDA

RHOVTE-RHOV

DELW--RHOV*DZ*DWICK*3. 1416-NTESTU*RHOVTE*DZ*DTES*3. 1416
W2-W+DELW

IF(W2.LE.0.0) THEN

XM22=0.0
P02-P01
T-TO
GO TO 30
ENDIF

C
C FIND THE FRICTION FACTOR AND THE FRICTION INFLUENCE COEFFICIENT
C

T-TO /CON1

RMU-6. 083E-09*T+1 .2606E-05
WBAR- (W+W2) /2.0

IF(WBAR.LE.0.0) THEN
XM22-0.0

P02-P0l
T=TO

GO TO 30
ENDIF

REY- (4. 0*WBAR*DHYDRO) /(3. 1416*DVAPOR**2 .0*RMU)
RER--DELW/ C3.1416*RMU*DZ)

ZBAR-(C(Z-XTI) IOMEGA) **2
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IF((NDT/NWRITE) .EQ. (NDT/XWRITE)) THEN

C WRITE(6,-) 'REY-',REY

ENDI F
IF(REY.GE.12000) WRITE(6,*) 'REY>12000'

FL=16/REY* (1. 2337-0. 2337 *EXP (-0. 036*ABS (RER) )) *EXP (1.20 *XM2)

C FL-24/REY

BETA=ABS (RER/REY)
FSTAR-0 .046/REY**0 .2

FT-FSTAR*(l+55*REY**0.l*EXP(l.2*XM2) *BETA**0.9*(PL/DHYDRO) **0lI)

IF(Z.LE.XTI) F=FL
IF(Z.GT.XTI) F=FT-(FT-FL)*EXP(-0.412*ZBAR)

FF=CON4*CON1/CON2*4 . 0F/DHYDkO
FFP-CON4/2.0*4 . 0F/DHYDRO

C

IF(W2.LE.0.0) WRITE(6,*) 'W2<0.0'

XM22-EXP (ALOG (XM2) +FF*DZ+FW*ALOG (W2 1W))
IF(XMMAX.LT. (XM22**0.5)) XI4MAX-XM22**0.5
P02-EXP (ALOG(POl) -FFP*DZ-FWP*ALOG(W2/W))

30 P2=P02/(1.0+(GAMMA-1.0)/2*X1422)**GAMo41

TX-T

DO 80 NX-1,100
T2=.-5567. 0/ALOGlO (P2*TX**0 .5/2. 29Ell)
IF(ABS(T2-TX)LLT.1.0) GO TO 90
TX-T2
IF(NX.EQ.100) WRITE(6,*) 'NX=100'

80 CONTINUE

90 TVREAL(N)-T2

PV(N)-P2
PVTTL (N)-iPO2
DENV (N) -PV (N) /(R*TVREAL (N))

C
cc WRITE(6,20)Z/PL,P2/P0,T,W2,XM22
CC 20 FORMAT(lX,5(3X,F15.l0))

5 CONTINUE
C
C

DO 50 N-1,KBURN
TVREAL (N) -TVREAL (KBURN+1)
PV (N) -PV (KBURN+1)
PVTTL (N)-PVTTL (KBURN+l)

50 CONTINUE

40 RETURN
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END

C
C
C

C

C SUBROUTINE CHI*

C
C
C

SUBROUTINE CHI

C ONE DIMENSIONAL COMPRESSIBLE VAPOR FLOW FOR HEAT PIPE

REAL *8 TV(100),W(100)
REAL LAMBDA

COMMON /HPIPE/ TV,DQDATE(100),PL,DZ,NZ,NDT,QVTES(100),
$NTESTU, TIME, KBURN, NWRITE, XWRITE, NGROV, RW, NADIA, PV (100)

COMMON /VCORE/ DQDA(100),DQDABAR(100),IPCM,PVTTL(100)

$ ,TVREAL(100) ,PLM,DTES,DVAPOR,DWICK,DHYDRO,XMMAX,KPLM

$ ,NEVAP,XTI,DENV(100)
DIMENSION PP(100)

IF(IPCM.EQ.l) THEN

DO 10 N=1,NZ
QVTES (N) -0.0

DQDATE(N)-0.O

10 CONTINUE
ENDIF

AV-3.1416*DVAPOR**2 .0/4.0

C GUESS THE VAPOR TEMPERATURE AT THE EVAPORATOR END TO

TO-TV (KBURN+l)

RHO=6.335E8*10.0** (-5567/TO) /TO**1.5

P0-RHO*R*T0

R-361. 5

LAMBDA-4636437 .26-180. 817*TO

GAMMA-i .67

GAMMl-GAI4MA/ (GAMMA-i .0)

C2-GAMMA*PO/RHO

W(KBURN+1)0O.O
TVREAL (KBURN+1) -TO

PV(KBURN+1) -P0

PP (KBURN+1) -P0

DENV (KBURN+1) -RHO

XMMAX0. 0
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DO 5 N-KBURN+2,NZ+i

RMU-6. 083E-9*TVREAL (N-i) +1. 2606E-5

RHO-6. 335E8*iO. 0**(-5567/TVREAL (N-i) )/TVREAL (N-i) **1 .5

c
C FIND THE MASS ADDED THROUGH THE PIPE WALL

C

RHOV=-DQDABAR (N-i) /LAMBDA
RHOVTE-RHOV

DELW--RHOV*DZ*DWICK*3. i4i6-NTESTU*RHOVTE*DZ*DTES*3. 14i6

W(N)-W(N-i)+DELW

IF(W(N).LE.0.0) THEN
PP (N) -PP (N-i)
PV (N) -PV (N-i)
TVREAL (N)-TVREAL (N-i)
GO TO 5

ENDIF

XM2-W (N) **2 .0/ (AV*RHO) **2 0/C2
IF(XMMAX.LT.(XM2**0.5)) XMMAX=XM2 **0.5

REY-4.0*DHYDRO*W(N) /(3.i4i6*DVAPOR**2.0*RHU)

IF((NDT/NWRITE) .EQ. (NDT/XWRITE)) THEN

C WRITE(6,*) RE~Y-',REY
ENDIF

A=32 .0*RMU/ (DHYDRO**2 . *AV*RHO*LAMBDA)

B-O. 076*RMU/ (DHYDRO**2. 0*AV*RHO*LAMBDA)

C-i.0+ (GAMMA-i) /2*XM2

IF (REY.LE.2300. 0.AND.XM2.LE.0.04) FV-A
IF(REY.LE.2300.O.AND.XM2.GT.0.04) EFV-A*C** (-0.5)
IF (REY.GT.2300. 0.AND.XM2.LE. 0.04) FV=B*REY**0.75
IF(REY.GT.2300.0.AND.XM2.GT.0.04) FV-B*REY**0.75*C** (-0.75)

IF(REY.LE.2300.0) BETA-i.33
IF(REY.GT.2300.0) BETA-1.0

PP (N)-PP (N-i) -FV*W (N) *LAM~BDA*DZ
PV(N)-PP(N)-BETA*W(N)**2.0/(AV**2.0*RHO)

PVTTL(N)-PV(N) * (i+(GAMMA-i) /2*XM2) **GAMMi

IF(XM2.GT.0.99) THEN

WRITE (6, 70) N, XM2
70 FORMAT(3X,'N-',I4,3X,'XM2-',F6.3)

ENDIF
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30 TX-TVREAL(N-1)

DO 80 NX-1,100
T2=-5567.0/ALOG10 (PV (N) *TX**0.5/2.29EII)
IF(ABS(T2-TX).LT.1.0) GO TO 90
TX=T2
IF(NX.EQ.100) WRITE(6,*) 'NX=100'

80 CONTINUE

90 TVREAL (N) =T2
DENV (N) =PV (N) / (R*TVREAL (N))

C
CC WRITE(6,20)Z/PL,P2/P0,T,W.,XM22
CC 20 FORMAT(IX,5(3X,F15.10))

5 CONTINUE
C

DO 50 N=1,KBURN
TVREAL (N) =TVREAL (KBURN+I)
PV (N) =PV (KBURN+I)
PVTTL (N) =PVTTL (KBURN+I)

50 CONTINUE
RETURN
END

C

C
C

C* SUBROUTINE TES *
C* * ****** * **** *** **

SUBRCUTINE TES

C CKL -THERMAL CONDUCTIVITY OF LIQUID LIH (W/M-K)
C CKSS -THERMAL CONDUCTIVITY OF SOLID LIH (W/M-K)
C CKP -NODAL THERMAL CONDUCTIVITY (W/M-K)
C CL -HEAT CAPACITY OF LIQUID LIH (J/K-KG)
C CS -HEAT CAPACITY OF SOLID LIH (J/K-"v)
C CP -NODAL HEAT CAPACITY (J/K-KG)
C DENL -DENSITY OF LIQUID LIH (KG/M3)
C DENS -DENSITY OF SOLID LIH (KG/M3)
C DENP -NI)DAL DENSITY (KG/M3)
C DR -SPACE INCREMENT IN RADIAL DIRECTION IN TES (M)
' DT -TIME STEP (SEC)

C DTHETA -ANGULAR INCREMENT (RADIANS)
C DZ -SPACE INCREENT IN AXIAL DIRECTION (M)
C HFý'SE -FUSION HEAT OF LIH (J/KG)
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C RO -OUTSIDE RADIUS OF HEAT PIPE WALL(M)

C R -NODAL RADIUS (M)
C TMELT -MELT TEMPERATURE Oi LIH (K)

C T(I.K) -NODAL TEMPERATURE (K)

C TV(K) -VAPOR TEMPERATURE (K)

REAL *8 T(40,100),TT(40,100),TOLD(40,100),TVOLD(100),TV(100)
REAL *8 TSTAR(40,100),TP,TW,TE,TS,TN,DTV(100)

REAL *8 DH(40,100),FH(40,100),FT(40,100),CSTAR(40,100)

REAL *8 P(100),O(100),CKTES1(100),F,F1,T1,T2

COMMON /HPIPE/ TV,DQDATE(100),ZL,DZ,NZ,NDT,QVTES(100),

$ NTESTU,TIME,KBURN,NWRITE,XWRITE,NGROV,RW,NADIA,PV(100)
COMMON /PCM/ TVOLD,T,TT,DTV,DT,NADI,NR,DTHETA,RO,

S ~TSTART, NTHETA, 02CM, OMELT, QPCMTTL

F= 0.01

Fl=2 .0-F

IF(NADI.EQ.4) GO TO 400

IF(NADI.EQ.6) GO TO 600

C TES GEOMETRY

DR=RO/NR

C THERMAL CONDUCTIVITY, HEAT CAPACITY AND DENSITY FOR TES

CKL=2. 1

CKSS=4 .2

CKM=2 .0* (CKSS*CKL) /(CKSS+CKL)
CL=737 0.0

CS=6280. 0

CM= (CL+CS) /2.0

DENL=5 50.0

DENS =DENL

DENM= (DENL+DENS) /2.0

CSTEEL-500 .0

C MFLTING TEMPERATURE AND HEAT FUSION
TMELT=956.0

HFUEE=2580000.C

QPCMTTL=3.1416*RO**ý2.0*ZL*DENM*HFUSE*NTESTU

T1=951 .0

T2-961 .0

H1=CS*Tl

H2=CS*TMELT+CL* (T2-TMELT)+HFUSE
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C TES STARTING TEMPERATURE

IF(NDT.EQ.l) THEN

Do 30 K=1,NZ

DO 36 I=l,NR

T (I, K) =TSTART

TOLD (I, K) =TSTART

36 CONTINUE

30 CONTINUE

ENDIF

DO 50 I=1,NR

DO 55 K=l,NZ

R=RO- (I-0.5) *DR

C IIIIIH jIII
TP=TOLD (I, K)

IF(I.EQ.1) TN=TP+2*(TVOLD(K)-TP)*(l-DR/(4*RO);

IF(I.EQ.NR) TS=TP

IF(K.EQ.1) TW=TP

IF(K.EQ.NZ) TE=TP

IF(I.NE.1) TN=TOLD(I-1,K)

IF(I.NE.NR) TS=TOLD(I+l,K)

IF(K.NE.1) TW=TOLD(I,K-l)

IF(K.NE.NZ) TE=TOLD(I,K+l)

IF(TP.LE.TMELT) THEN

IF(TN.LE.TMELT) CKN=CKSS

IF(TS.LE.TMELT) CKS='CKSS

IF(TW.LE.TMELT) CKW=CKSS

IF(TE.LE.TMELT) CKE=CKSS

IF (TN.GT.TMELT) CKN=CKM

IF(TS.GT.TMELT) CKS=CKM

IF(TW.GT.TMELT) CKW=CKM

IF(TE.GT.TMELT) CKE=CKM

ENDIF

IF(TP.GT.TMELT) THEN

IF(TN.LE.TMELT) CKN=CKM

IF(TS.LE.TMELT) CKS=~CKM

IF(TW.LE.TMELT) CKW=CKM

IF(TE.LE.TMELT) CKE=CKM

IF(TN.GT.TMELT) CKN=CKL
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IF (TS.GT.TMELT) CKS-CKL
IF (TW.GT.TMELT) CKW=CKL
IF(TE.GT.TMELT) CKE-CKL

ENDI F

DH (I, K)=(DT/ (DENM*R*DR**2.0)) *(CKN* (R+DR/2) *(TN-TP)
$ +CKS* (R-DR/2) *(TS-TP))
$ +(DT/(DENM*DZ**2.O))*(CKW*(TW-TP)+CKE*(TE-TP))

C MELTING
IF(DH(I,K).GE.O.O) THEN

IF(TP.LT.Tl) FH(I,K)=CS*TP
IF(TP.GE.T1.AND.TP.LE.T2) FH(I,K)=(H2-Hl) *(TP.Tl) /(T2-Tl)+H1
IF(TP.GT.T2) FH(I,K)=(TP-T2) *CL+H2

H-FH (I, K) +DH (I, K)

IF(H.LT.Hl) TSTAR(I,K)'-H/CS
IF(H.GE.Hl.AND.H.LE.H2) TSTAR(I,K)-(H-Hl)* (T2-Tl) /(H2-Hl)+Tl
IF(H.GT.H2) TSTARCI,K)=(H-H2) /CL+T2

IF(FH(I,K) .LT.Hl.AND.H.LT.Hl) CSTARCI,K)=CS
IF(FH(I,K) .GE.Hl.AND.FH(-I,K) .LE.H2.AND.H.GE.H1.AND.H.LE.H2)

$ CSTAR(I,K)-(H2-Hl)/(T2-T1)
IF(FH(I,K) .GT.N2.AND.H.GT.H2) CSTAR(I,K)-CL
IF((FH(I,K).LT.Hl.AND.H.GT.Hl).OR.(FH(I,K).LT.H2.AND.H.GT.H2))

$ CSTAR(I,K)-DH(I,K)/(TSTAR(I,K)-TP)

ENDIF

C SOLIDIFICATION
IF(DH(IIPK).LT.O.O) THEN

IF(TP.LT.T1) FH(I,K)=CS*TP
IF(TP.GE.T1.AND.TP.LE.T2) FH(I,K)=(H2-Hl)*(TP-T2)/ (T2-Tl)+H2
IF(TP.GT.T2) FH(I,K)-(TP-T2)*CL+H2

HU.FH(I,K) +DH (I,K)

IF(H.LT.H1) TSTAR(I,K)-H/CS
IF(H.GE.Hl.AND.H.LE.H2) TSTAR(I,K)-(H-H2) *(T2-T1) /(H2-Hl) iT2
IF(H.GT.112) TSTAR(I,K)-(H-H2)/CL+T2
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IF(FH(I,K) .LT.Hl.AND.H.LT.H1) CSTAR(I,K)=CS
IF(FH(I,K) .GE.H1.AND.FH(I,K) .LE.H2.AND.H.GE.H1 .AND.H.LE.H2)
$ CSTAR(I,K)=(H2-H1)/(T2-Tl)
IF(FH(I,K) .GT.H2.AND.H.GT.H2) CSTAR(I,K)=CL
IF((FH(I,K).GT.H1.AND.H.LT.H1).OR.(FH(I,K).GT.H2.AND.H.LT.H2))

$ CSTAR(I,K)=DH(IK)/ (TSTAR(I,K)-TP)
ENDIF

55 CONTINUE
50 CONTINUE

C

C &&&&&&& COMPUTATION FOR THE FIRST HALF TIME STEP &&&&&&6&&&
QPCM-0 .0
QMELT=O. 0

DO 180 I-1,NR
DO 160 K-1,NZ

R-RO- (1-0.5) *DR

TP=TOLD (I, K)

IF(I.EQ.l) TN-TP+2*(TVOLD(K)-TP)*(1-DR/(4*RO))
IF(I.EQ.NR) TS-TP

IF(K.EQ.1) TW=TP
IF(K.EQ.NZ) TE=TP

IF(I.NE.1) TN=TOLD(I-1,K)
IF(I.NE.NR) TS=TOLD(I+1,K)
IF(K.NE.1) TW-TOLD(I,K-1)

IF(K.NE.NZ) TE=TOLD(I,K+1)

IF(TP.LE.TMELT) THEN
IF (TN. LE.TMELT) CKN=CKSS

IF (TS .LE. TMELT) CKS=CKSS
IF(TW.LE.TMELT) CKW=CKSS

IF (TE. LE .TMELT) CKE=CKSS

IF(T.GT.MEL) CK-CK

IF(TS.GT.TMELT) CKN=CKM
IF(TW.GT.TMELT) CKS=CKM
IF(TW.GT.TMELT) CKW=CKM

ENDIF

IF(TP.GT.TMELT) THEN
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IF (TN.LE.TMELT) CKN-CKM

IF(TS.LE.TMELT) CKS-CKM

IF(TW.LE.TMELT) CKW=CKM

IF(TE.LE.TMELT) CKE=CKM

IF(TN.GT.TMELT) CKN-CKL
IF (TS.GT. TMELT) CKS-CKL

IF(TW.GT.TMELT) CKW-CKL
IF (TE. GT. TMELT) CKE-CKL

ENDIF

DENP=DENM

CP-CSTAR(,K

IF(I.EQ.i) CKTESI(K)=CKN

VOLP ( (R+DR/2) **2 .0- (R-DR/2) **2 .0) *3.1416*DZ*NTESTU

IF(T(I,K).LT.T1) THEN

QPCM-QPCM+DENSWVOLP*CS* (1'(I, K) -TSTART)

OMELT-QMELT
ENDIF
IF(T(I,K).GE.Tl.AND.T(I,K).LE.T2) THEN

QPCM-QPCM+DENS*VOLP*CS* (Tl-TSTART) +DENM*VOLP* (FH (I, K)-Hi)

QMELT-QMELT+DENM*VOLP* (FH(I,K) -Hi)
ENDIF
IF(T(I,K).GT.T2) THEN

QPCM=QPCM+ DENS *VOLP*CS* (TMELT-TSTART) +DENM*VOLP*HFUSE

$ +DENL*VOLP*CL* (T (I,K) -TMELT)

QMELT-QMELT+DENM*VOLP* HFUSE
ENDI F

CI IIIII*III111111

C--CKW* Fl
A-2. 0*DENP*CP*DZ**2. 0/DT+ (CKW+CKE) *Fl
B--CKE*Fl
D2-(DZ**2.0*CKN* (R+DR/2.0) /R/DR**2.0) *F
D3-(DZ**2.O*CKS*(R-DR/2.0)/R/DR**2.0)*F

Dl-2.0*DENP*CP*DZ**2.O/DT-D2-D3

IF(I.EQ.l) D8-(2.0*DZ**2.0*CKN* (R+DR/4)/R/DR**2.0)*F

IF(I.EQ.l.OR.I.EQ.NR) THEN
IF(I.EQ.3) D-(Dl+D2-D8) *T(I,K)+D3*T(I+lK)+D8*TVOLD(K)
IF(I.EQ.NR) Dm(Dl+D3) *T(I,K)+D2*T(I-1.,K)

ELSE

D-Dl*T (I, K) +D2*T (I-i, K) +D3*T (I+1, K)
ENDIF
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IF(Dl.LT.0. 0) WRITE(6, 128) I,K
128 FORMAT(lX,'D1=(-) IN ROOP3 I,K-',2(2X,I3))

IF(D1.LT.0.0) GO TO 1000

IF(K.EQ.1) THEN
C=0. 0
A-A-CKW*F1

B-B
D-D
ENDI F

IF(K.EQ.NZ) THEN
C-C

A-A-CKE* Fl
B=0. 0
D-D
ENDIF

C
C TDMA ALGORITHM

C

IF(K.EQ.1) THEN
P (K) --B/A
Q (K) =D/A
ELSE

P (K) =-B/ (A+C*P (K-i))
Q(K)=(D-C*Q(K-1) )/ (A+C*P(K-l))

END IF

IF(NDT.EQ.l) THEN
QVTES (K) =NTESTU*CKTES1 (K) *(2. 0*3.1416* (RO-DR/4) *DZ)

$ *(T(IK)-.TVOLD(K))/(DR/2)

DQDATE (K) -QVTES (K) /(NTESTU*2 .0*3. 1416*RO*DZ)
END IF

160 CONTINUE

DO 170 K1-1,NZ
K-NZ+ 1-Ki

IF(K.EQ.NZ) TT(I,K)-Q(K)
ITF(K.NE.NZ) TT(I,K)=P (K) *TT(I,K+1)+Q(K)

170 CONTINUE
180 CONTINUE

C

DO 193 K-1,NZ
DO 195 I-1,NR
T (I, K) -TT (1, K)

195 CONTINUE

193 CONTINUE
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IF(NADI.EQ.123) GO TO 1000

C

C &&&&&COMPUTATION FOR THE SECOND HALF TIME STEP &&&&
C
400 DO 380 K-1,NZ

DO 360 1-1,NR

R-RO- (1-0.5) *DR

TP-TOLD (I, K)

IF(I.EQ.l) TN-.TP+2*(TVOLD(K)-TP)*(1..DR/(4*RO))
IF(I.EQ.NR) TS-TP
IF(K.EQ.l) TW=TP
IF(K.EQ.NZ) TE=TP

IF(I.NE.1) TN=TOLD(I-1,K)
IF(I.NE.NR) TS-TOLD(I+1,K)

IF(K.NE.1) TW=TOLD(I,K-1)
IF(K.NE.NZ) TE-TOLD(I,K+l)

IF(TP.LE.TMELT) THEN
IF(TN.LE.TMELT) CKN=CKSS
IF (TS. LE. TMELT) CKS-CKSS

IF (TW.LE.TMELT) CKW=CKSS
IF CTE.LE.TMELT) CKE=CKSS

IF(TN.GT.TMELT) CKN=CKM
IF (TS.GT.TMELT) CKS-CKM
IF (TW.GT.TMELT) CKW-CKM
IF(TE.GT.TMELT) CKE=CKM

ENDIF

IF(TP.GT.TMELT) THEN
IF(TN.LE.TMELT) CKN-CKM
IF(TS.LE.TMELT) CKS-CKM

IF (TW. LE. TMELT) CKW-CKM
IF(TE.LE.TMELT) CKE-CKM

IF(TN.GT.TMELT) CKN-CKL
IF(TS.GT.TMELT) CKS=CKL
IF(TW.GT.THELT) CKW-CKL
IF (TE.GT.TMELT) CKE=CKL

ENDIF

DENP-DENM
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CP-CSTAR (I, K)

Cliii11111111111
C=-CKN* (R+O. 5*DR) *Fl
A='2. 0*DENP*CP*R*DR**2. 0/DT+ (CKN* (R+0. 5*DR)
$+CKS* (R-0. 5*DR)) *Fl
B--CKS* (R-O. 5*DR) *F1
D4- (R*DR**2. 0*CKW/DZ**2.0) *F
D5- (R*DR**2. 0*CKE/DZ**2 .0) *F
IF(K.EQ.1) D4-0.0
IF(K.EQ.NZ) D5-0.0
D1=2 .0*DENP*CP*R*DR**2. 0/DT-D4-D5

IF(K.EQ.1.OR.K.EQ.NZ) THEN
IF(K.EQ.1) D=Dl*T(I,K)+D5*T(I,K+l)
IF(K.EQ.NZ) D=Dl*T(I,K)+D4*T(I,K-1)

ELSE
D=Dl*T (I, K) +D4*T (I, K-i) +D5*T (I, K+l)

ENDIF

IF(D1.LT.O.0) WRITE(6,328)1,K
328 FORMAT(1X,'Dl=(-) IN ROOP1 I,K-',2(2X,13))

IF(D1.LT..0.) GO TO 1000

IF(I.EQ.1) THEN
C-0 .0
A-A+CKN* R*F 1
B-B
D=D+2. 0*CKN* (R+DR/4) *TV (K) *F1

C D-D+2.0*CKN* (R+DR/4)* (TVOLD (K) +DTV (K) )*F1

ENDIF

IF(I.EQ.NR) THEN
C-C
A-A-CKS* (R-DR/2 .0) *F1

B-0.0
D=D
ENDI F

C
C TDMA ALGORITHM

C
IF(I.EQ.1) THEN
P (I) --B/A
Q(I) -D/A

ELSE

Q(I)-(D-C*Q(I-1) ) /(A+C*P(I-1))
ENDIF

360 CONTINUE
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DO 370 I1=1,NR
I-NR+I-Il
IF(I.EQ.NR) TT(I,K)=Q(I)
IF(I.NE.NR) TT(I,K)=P (I)*TT(I+1,K)+Q(I)

370 CONTINUE
380 CONTINUE

C
DO 310 K=1,NZ

QVTES(K)-NTESTU*CKTES1(K)*(2.0*3.1416*.(RO-DR/4)*DZ)*
$ (TT(1,K)-TV(K))/(DR/2.0)

310 CONTINUE

IF(NADI.EQ.4) GO TO 1000

600 DO 393 K-1,NZ
DO 395 I-1,NR
T (I, K)-TT (I,K)
TOLD (I, K) -TT (I, K)

395 CONTINUE
393 CONTINUE

1000 RETURN

END

C
C
C * SUBROUTINE HWANGBO *

C
C
C

SUBROUTINE HWANGBO

C ONE DIMENSIONAL CAPILLARY LIQUID FLOW

C QVL(K) -EVAPORATION (-) OR CONDENSATION (+) RATE PER UNIT HEAT
C PIPE LENGTH (W/M)
C VISLIQ - LIQUID DYNAMIC VISCOSITY (NS/M2)
C TENLIQ - LIQUID SURFACE TENSION (N/M)
C LAMBDA - LIQUID LATENT HEAT (J/KG)

REAL *8 TV(100)

DIMENSION MDOT(100)

DIMENSION ALPHA(101),ALPHAD(101),OMEGA(101),SAT(101)
DIMENSION WIDTH(101),DEPTH(101),A0(101),A1(101),QTERM (101)
DIMENSION VOLFLW(I01),DVDALP(101),w(5),V(5),QVL(100)
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COMMON /HPIPE/ TV,DQDATEE(100),ZL,DZ,NZ,N'DT,QVTES(100),

$NTESTU,TIME,KBURN,NWRITE,XWRITE,NGROV,RW,NADIA,PV(100)

COMMON /LIQ/ QV(100),PL(100),StJMQVI

$ CL, NZP , WIDBAR, DEPTHG, DENL, VISLIQ, TENLIQ, LAMBDA

Cl KBURNO0

Do 3 K-1,NZ

KI-NZ-K+l
QVL (Ki) -1. 0*QV (K) /NGROV/DZ

3 CONTINUE

C ****BOUNDARY AND INITIAL CONDITIONS

DO 5 K=1,NZP1

DEPTH (K) -DEPTHG
WIDTH (K) -WIDBAR

5 CONTINUE

C GUESS ALPI4A(1, OMEGA(1

ALPHA(1h=3.1416/2. 0

OMEGA (1) -0. 0

DO 10 K=1,NZP1
X-DEPTH (K) /WIDTH (K) /2.0

AO (K) -0.7058+0. 8685*X+0. 1646*x**2 .0-0. 0145*X**3. 0

Al(K)=0.1624+0.3167*X-0.1075*X**2.O+0.0073*X**3.0
QTERM (K) -VISLIQ/ (TENLIQ*DENL*WIDTH (K) **3.0)

VOLFLW (K)-- (AO (K) +A1 (K) *ALPHA~(K))

DVDALP (K)--Al (K)

IF(ALPHA(K).'LT. (3.1416/180.0)) THEN

KBURN-NZP1 -K

GO TO 30

ENDIF

IF(K.EQ.NZP1) GO TO 30

VOLF-VOLFLW (K)
DVDA-DVDALP (K)
W(1)-0.0

V(1)-0.0

DO 20 N-1,4

ALP-ALPHA (K) +0. 5*DZ*W (N)

ONE-OMEGA (K) +0. 5*DZ*V (N)

W (N+1) -OMEGA (K) +0. 5*DZ*V (N)

V(N+1)--(DVDA/VOLF+1.0/TAN(ALP))*(ABS(OME))**2.0
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$ +QTERM(K)*(QVL(K)/LAAMBDA)/(VOLF*SIN(ALP))

20 CONTINUE

ALPHA(K+1)-ALPHA(K)+(DZ/6.0)*(W(2)+2.0-W(3)+2.0*W(4)+W(5))

OMEGA(K+1)=OMEGA(K)+(DZ/6.0)*(V(2)+2.0-V(3)+2.0-V(4)+V(5))

10 CONTINUE

30 DO 50 K=1,NZP1-KBURN

MDOT (K) -VOLFLW (K) *SIN (ALPHA (K) )*O?4EGA (K) /QTERN (K)

50 CONTINUE

IF( (NDT/NWRITE) .EQ. (NDT/XWRITE)) THEN

cc WRI TEE (6, *)1

cc WRITEE(6,*) 'KBURN=',KBURN

cc WRI TEE (6, *) 1

cc WRITEE(6,*)' K ALPHAD OMEGA MDOT'

DO 60 K=1,NZP1-KBURN

ALPHAD (K) -(180.0/3.1416) *ALPRH (K)

cc WRITEE(6,65)K,ALPHAD(K),OMEGA(K),MDOT(K)
CC65 FORMAT (lX, 14,2 (2X, F1O.5), 2X, Fil.6)

60 CONTINUE
ENDI F
RETURN
END

C

C

C *SUBROUTINE LIQUID
C
C
C

SUBROUTINE LIQUID

C ONE DIMENSIONAL CAPILLARY LIQUID FLOW

C VISLIQ - LIQUID DYNAMIC VISCOSITY (NS/M2)

C TENLIQ - LIQUID SURFACE TENSION (N/M)
C LAMBDA - LIQUID LATENT HEAT (J/KG)

REAL *8 TV(100),KPERM

DIMENSION QL(100),DELPL(100),DPVPL(100)
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COMMON /HPIPE/ TV,DQDATE(100),ZL,DZ,NZ,NDTQVTES(100),
$NTESTU, TIME, KBURN, NWRITE, XWRITE, NGROV, RW, NADIA, PV (100)
COMMON /LIQ/ QV(100),PL(100),SUMQVI,KPVMIN,PCMAXDPVPLMAX,

$ CL,NZPI,WIDBAR,DEPTHG,DENL,VISLIQ,TENLIQ, LAMBDA

FLREL=14 .3
RM-RW+DEPTHG/2
AW=2.0*3. 1416*RM*DEPTHG
EPS=NGROV*WIDBAR/ (2.0*3. 1416*RM)
RHL=2. 0*WIDBAR*DEPTHG/ (2 .0*WIDBAR+2. 0*DEPTHG)
KPERM-2. 0*EPS*PJIL**2 0/FLREL

FL=VISLIQ/ (KPERM*AW*DENL* LAMBDA)

QL (KBURN+1) =QV (KBURN+1)

DO 10 K=KBURN+2,NADIA
QL (K) =QL (K-i) +QV (K)

10 CONTINUE

DO 20 K= NZ, KBtJRN+l, -1

IF(K.GT.NADIA) PL(K)=PV(K)
IF(K.LE.NADIA) THEN

DELPL (K) =-FL*QL (K) *DZ
PL (K) =PL (K+1) +DELPL (K)

ENDI F

20 CONTINUE

DO 30 K=KBURN+1,NADIA
DPVPL (K) -PV (K) -PL (K)

30 CONTINUE

DPVPLMAX-DPVPL (KBURN+1)

C IF(DPVPL(KBURN+1).GE.PCMAX) THEN
C DO 60 K=KBURN+1,NADIA
C IF(DPVPL(K).GT.PCMAX) KBURNNEW-K-1
C 60 CONTINUE

C ENDIF

C IF(DPVPL(KBURN+1) .LT.PCMAX.AND.KBURN.EQ.0) KBURNNEW-KBURN

C IF(DPVPL(KBURN+1) .LT.PCMAX.AND.KBURN.NE.0) KBURNNEW=KBURN-1
C
C KBURN-KBUIRNNEW
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KBURN=O

RETURN
END
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